Suppr超能文献

V-Dock:基于机器学习的对接评分和分子优化快速生成新型类药物分子。

V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization.

机构信息

Department of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Korea.

Arontier Co., Seoul 06735, Korea.

出版信息

Int J Mol Sci. 2021 Oct 27;22(21):11635. doi: 10.3390/ijms222111635.

Abstract

We propose a computational workflow to design novel drug-like molecules by combining the global optimization of molecular properties and protein-ligand docking with machine learning. However, most existing methods depend heavily on experimental data, and many targets do not have sufficient data to train reliable activity prediction models. To overcome this limitation, protein-ligand docking calculations must be performed using the limited data available. Such docking calculations during molecular generation require considerable computational time, preventing extensive exploration of the chemical space. To address this problem, we trained a machine-learning-based model that predicted the docking energy using SMILES to accelerate the molecular generation process. Docking scores could be accurately predicted using only a SMILES string. We combined this docking score prediction model with the global molecular property optimization approach, MolFinder, to find novel molecules exhibiting the desired properties with high values of predicted docking scores. We named this design approach V-dock. Using V-dock, we efficiently generated many novel molecules with high docking scores for a target protein, a similarity to the reference molecule, and desirable drug-like and bespoke properties, such as QED. The predicted docking scores of the generated molecules were verified by correlating them with the actual docking scores.

摘要

我们提出了一种计算工作流程,通过将分子性质的全局优化与蛋白质-配体对接结合机器学习来设计新型类药分子。然而,大多数现有方法严重依赖实验数据,许多靶标没有足够的数据来训练可靠的活性预测模型。为了克服这一限制,必须使用可用的有限数据进行蛋白质-配体对接计算。这种在分子生成过程中的对接计算需要相当大的计算时间,从而阻止了对化学空间的广泛探索。为了解决这个问题,我们训练了一个基于机器学习的模型,该模型使用 SMILES 预测对接能,以加速分子生成过程。仅使用 SMILES 字符串就可以准确预测对接分数。我们将此对接评分预测模型与全局分子性质优化方法 MolFinder 相结合,以找到具有高预测对接评分的具有所需性质的新型分子。我们将这种设计方法命名为 V-dock。使用 V-dock,我们为目标蛋白高效地生成了许多具有高对接评分、与参考分子相似且具有理想类药性和定制性的新型分子,例如 QED。通过将生成的分子的预测对接评分与实际对接评分相关联,验证了它们的预测对接评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14c/8584000/cbec93af7354/ijms-22-11635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验