Suppr超能文献

基于监督机器学习的手部性能评估数据手套设计。

Design of a Data Glove for Assessment of Hand Performance Using Supervised Machine Learning.

机构信息

Mechatronics Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt.

Faculty of Computer Science, Ain Shams University, Cairo 11566, Egypt.

出版信息

Sensors (Basel). 2021 Oct 20;21(21):6948. doi: 10.3390/s21216948.

Abstract

The large number of poststroke recovery patients poses a burden on rehabilitation centers, hospitals, and physiotherapists. The advent of rehabilitation robotics and automated assessment systems can ease this burden by assisting in the rehabilitation of patients with a high level of recovery. This assistance will enable medical professionals to either better provide for patients with severe injuries or treat more patients. It also translates into financial assistance as well in the long run. This paper demonstrated an automated assessment system for in-home rehabilitation utilizing a data glove, a mobile application, and machine learning algorithms. The system can be used by poststroke patients with a high level of recovery to assess their performance. Furthermore, this assessment can be sent to a medical professional for supervision. Additionally, a comparison between two machine learning classifiers was performed on their assessment of physical exercises. The proposed system has an accuracy of 85% (±5.1%) with careful feature and classifier selection.

摘要

大量的脑卒中康复患者给康复中心、医院和物理治疗师带来了负担。康复机器人和自动化评估系统的出现可以通过帮助高恢复水平的患者进行康复来缓解这一负担。这种帮助将使医疗专业人员能够更好地为严重受伤的患者提供服务,或者治疗更多的患者。从长远来看,这也意味着经济援助。本文展示了一种利用数据手套、移动应用程序和机器学习算法进行家庭康复的自动化评估系统。该系统可用于高恢复水平的脑卒中患者,以评估他们的表现。此外,还可以将评估结果发送给医疗专业人员进行监督。此外,还对两种机器学习分类器在物理锻炼评估方面的性能进行了比较。通过仔细选择特征和分类器,所提出的系统的准确率为 85%(±5.1%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/681d/8587288/95691b4f6011/sensors-21-06948-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验