Suppr超能文献

基于根尖周放射影像的卷积神经网络检测牙尖病变。

Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph.

机构信息

Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan.

Department of Computer Science and Information Engineering, National Ilan University, Yilan City 260, Taiwan.

出版信息

Sensors (Basel). 2021 Oct 24;21(21):7049. doi: 10.3390/s21217049.

Abstract

Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion.

摘要

根尖病变,是慢性传染病的统称,是现代生活中非常常见的牙科疾病,由各种因素引起。目前流行的根管治疗方法是利用从患者身上拍摄的 X 光片,由人工手动标记病变区域,因此比较耗时。此外,由于拍摄角度或剂量的不同,一些图像的重要细节可能无法识别。为了缩短诊断过程并提高效率,应自动执行重复任务,以便牙医能够将更多精力集中在技术和医疗诊断上,如治疗、牙齿清洁或医疗沟通。为了实现自动诊断,本文提出并建立了一个基于卷积神经网络(CNN)的病变区域分析模型。为了建立一个标准化的临床应用数据库,已获得机构审查委员会(IRB)的批准,注册号为 202002030B0,并由提供实际临床数据的牙医建立了数据库。在这项研究中,图像数据首先经过高斯高通滤波器进行预处理。然后,应用迭代阈值法将 X 光图像分割成几个单独的牙齿样本图像。将包含图像数据库的单个牙齿图像集合作为输入输入到 CNN 迁移学习模型中进行训练。70%(70%)的图像数据库用于训练和验证模型,而剩余的 30%用于测试和估计模型的准确性。所提出的 CNN 模型的实际诊断准确率为 92.5%。该模型成功地促进了根尖病变的自动诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02e/8588190/9fd93e5d5812/sensors-21-07049-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验