Department of Mechatronics Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
National Centre of Robotics and Automation, Islamabad 44000, Pakistan.
Sensors (Basel). 2021 Oct 30;21(21):7242. doi: 10.3390/s21217242.
This paper presents a systematic and efficient design approach for the two degree-of-freedom (2-DoF) capacitive microelectromechanical systems (MEMS) accelerometer by using combined design and analysis of computer experiments (DACE) and Gaussian process (GP) modelling. Multiple output responses of the MEMS accelerometer including natural frequency, proof mass displacement, pull-in voltage, capacitance change, and Brownian noise equivalent acceleration (BNEA) are optimized simultaneously with respect to the geometric design parameters, environmental conditions, and microfabrication process constraints. The sampling design space is created using DACE based Latin hypercube sampling (LHS) technique and corresponding output responses are obtained using multiphysics coupled field electro-thermal-structural interaction based finite element method (FEM) simulations. The metamodels for the individual output responses are obtained using statistical GP analysis. The developed metamodels not only allowed to analyze the effect of individual design parameters on an output response, but to also study the interaction of the design parameters. An objective function, considering the performance requirements of the MEMS accelerometer, is defined and simultaneous multi-objective optimization of the output responses, with respect to the design parameters, is carried out by using a combined gradient descent algorithm and desirability function approach. The accuracy of the optimization prediction is validated using FEM simulations. The behavioral model of the final optimized MEMS accelerometer design is integrated with the readout electronics in the simulation environment and voltage sensitivity is obtained. The results show that the combined DACE and GP based design methodology can be an efficient technique for the design space exploration and optimization of multiphysics MEMS devices at the design phase of their development cycle.
本文提出了一种系统有效的双自由度(2-DOF)电容式微机电系统(MEMS)加速度计设计方法,该方法结合计算机实验设计与分析(DACE)和高斯过程(GP)建模来实现。MEMS 加速度计的多个输出响应,包括自然频率、质量块位移、吸合电压、电容变化和布朗噪声等效加速度(BNEA),同时针对几何设计参数、环境条件和微制造工艺约束进行优化。采样设计空间是使用基于 DACE 的拉丁超立方采样(LHS)技术创建的,并且使用多物理场耦合场电热结构相互作用的有限元方法(FEM)模拟来获得相应的输出响应。使用统计 GP 分析获得各个输出响应的 metamodel。所开发的 metamodel 不仅允许分析单个设计参数对输出响应的影响,而且还可以研究设计参数之间的相互作用。定义了一个考虑 MEMS 加速度计性能要求的目标函数,并使用组合梯度下降算法和适宜性函数方法对输出响应相对于设计参数进行了同时多目标优化。使用 FEM 模拟验证了优化预测的准确性。最终优化的 MEMS 加速度计设计的行为模型与仿真环境中的读出电子设备集成,并获得了电压灵敏度。结果表明,基于 DACE 和 GP 的组合设计方法可以成为在其开发周期的设计阶段探索和优化多物理 MEMS 器件设计空间的有效技术。