CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China.
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):707-726. doi: 10.1016/j.gpb.2021.09.007. Epub 2021 Nov 10.
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.
由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)感染引起的 2019 年冠状病毒病(COVID-19)目前是一种全球大流行疾病。人们已经进行了广泛的调查研究,以了解 SARS-CoV-2 感染的临床和细胞效应。基于质谱的蛋白质组学研究揭示了感染引起的细胞变化,并鉴定了除最长的非结构蛋白 3(NSP3)以外的所有 SARS-CoV-2 成分的众多相互作用因子。在这里,我们表达了全长 SARS-CoV 和 SARS-CoV-2 的 NSP3 蛋白,使用多组学方法研究它们独特和共同的功能。我们对表达 NSP3 的细胞进行了互作组、磷酸化蛋白质组、泛素蛋白质组、转录组和蛋白质组分析。我们发现 NSP3 在细胞功能(如 RNA 代谢和免疫反应(例如 NF-κB 信号转导))中发挥着重要作用。有趣的是,我们表明 SARS-CoV-2 NSP3 具有内质网和线粒体定位。此外,SARS-CoV-2 NSP3 与线粒体核糖体蛋白更密切相关,而 SARS-CoV NSP3 与细胞质核糖体蛋白相关。总之,我们对 NSP3 的综合多组学研究提高了对 NSP3 功能的理解,并为开发抗 SARS 策略提供了潜在的靶点。