Cumming School of Medicine, Department of Pathology & Laboratory Medicine, the University of Calgary, AB, Canada; Cumming School of Medicine, Department of Microbiology, Immunology, and Infectious Diseases, the University of Calgary, Canada; Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, the University of Calgary, Calgary, AB, Canada.
Alberta Precision Laboratories, Diagnostic & Scientific Centre, Calgary, AB, Canada; Hematology Translational Lab, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, the University of Calgary, Calgary, AB, Canada.
J Clin Virol. 2021 Dec;145:105025. doi: 10.1016/j.jcv.2021.105025. Epub 2021 Nov 3.
An unbiased metagenomics approach to virus identification can be essential in the initial phase of a pandemic. Better molecular surveillance strategies are needed for the detection of SARS-CoV-2 variants of concern and potential co-pathogens triggering respiratory symptoms. Here, a metagenomics workflow was developed to identify the metagenome diversity by SARS-CoV-2 diagnosis (n = 65; n = 60), symptomatology status (n = 71; n = 54) and anatomical swabbing site (n = 96; n = 29) in 125 individuals. Furthermore, the workflow was able to identify putative respiratory co-pathogens, and the SARS-CoV-2 lineage across 29 samples. The diversity analysis showed a significant shift in the DNA-metagenome by symptomatology status and anatomical swabbing site. Additionally, metagenomic diversity differed between SARS-CoV-2 infected and uninfected asymptomatic individuals. While 31 co-pathogens were identified in SARS-CoV-2 infected patients, no significant increase in pathogen or associated reads were noted when compared to SARS-CoV-2 negative patients. The Alpha SARS-CoV-2 VOC and 2 variants of interest (Zeta) were successfully identified for the first time using a clinical metagenomics approach. The metagenomics pipeline showed a sensitivity of 86% and a specificity of 72% for the detection of SARS-CoV-2. Clinical metagenomics can be employed to identify SARS-CoV-2 variants and respiratory co-pathogens potentially contributing to COVID-19 symptoms. The overall diversity analysis suggests a complex set of microorganisms with different genomic abundance profiles in SARS-CoV-2 infected patients compared to healthy controls. More studies are needed to correlate severity of COVID-19 disease in relation to potential disbyosis in the upper respiratory tract. A metagenomics approach is particularly useful when novel pandemic pathogens emerge.
一种无偏倚的宏基因组学方法对于病毒的识别至关重要,特别是在大流行的初始阶段。需要更好的分子监测策略来检测引起呼吸道症状的 SARS-CoV-2 变体和潜在共病原体。在这里,开发了一种宏基因组学工作流程,以通过 SARS-CoV-2 诊断(n=65;n=60)、症状状态(n=71;n=54)和解剖拭子部位(n=96;n=29)来识别宏基因组多样性。此外,该工作流程能够识别出可能的呼吸道共病原体以及 29 个样本中的 SARS-CoV-2 谱系。多样性分析表明,症状状态和解剖拭子部位的 DNA 宏基因组发生了显著变化。此外,SARS-CoV-2 感染的无症状个体与未感染的无症状个体之间的宏基因组多样性也存在差异。虽然在 SARS-CoV-2 感染患者中鉴定出 31 种共病原体,但与 SARS-CoV-2 阴性患者相比,未观察到病原体或相关读取数的显著增加。使用临床宏基因组学方法首次成功鉴定出 Alpha SARS-CoV-2 VOC 和 2 种感兴趣的变体(Zeta)。宏基因组学管道对 SARS-CoV-2 的检测灵敏度为 86%,特异性为 72%。临床宏基因组学可用于识别可能导致 COVID-19 症状的 SARS-CoV-2 变体和呼吸道共病原体。总体多样性分析表明,与健康对照组相比,SARS-CoV-2 感染患者存在一组复杂的微生物,其基因组丰度谱不同。需要进一步的研究来关联 COVID-19 疾病的严重程度与上呼吸道潜在的生态失调。当出现新的大流行病原体时,宏基因组学方法特别有用。