Suppr超能文献

通过利用细胞图像特征和机器学习对作用机制进行建模,加速用于治疗新冠肺炎的药物重新利用。

Accelerating drug repurposing for COVID-19 treatment by modeling mechanisms of action using cell image features and machine learning.

作者信息

Han Lu, Shan Guangcun, Chu Bingfeng, Wang Hongyu, Wang Zhongjian, Gao Shengqiao, Zhou Wenxia

机构信息

Beijing, 100850 China State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology.

Beijing, 100083 China School of Instrumentation Science and Opto-Electronics Engineering and Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University.

出版信息

Cogn Neurodyn. 2023 Jun;17(3):803-811. doi: 10.1007/s11571-021-09727-5. Epub 2021 Nov 5.

Abstract

UNLABELLED

The novel coronavirus disease, COVID-19, has rapidly spread worldwide. Developing methods to identify the therapeutic activity of drugs based on phenotypic data can improve the efficiency of drug development. Here, a state-of-the-art machine-learning method was used to identify drug mechanism of actions (MoAs) based on the cell image features of 1105 drugs in the  LINCS database. As the multi-dimensional features of cell images are affected by non-experimental factors, the characteristics of similar drugs vary considerably, and it is difficult to effectively identify the MoA of drugs as there is substantial noise. By applying the supervised information theoretic metric-learning (ITML) algorithm, a linear transformation made drugs with the same MoA aggregate. By clustering drugs to communities and performing enrichment analysis, we found that transferred image features were more conducive to the recognition of drug MoAs. Image features analysis showed that different features play important roles in identifying different drug functions. Drugs that significantly affect cell survival or proliferation, such as cyclin-dependent kinase inhibitors, were more likely to be enriched in communities, whereas other drugs might be decentralized. Chloroquine and clomiphene, which block the entry of virus, were clustered into the same community, indicating that similar MoA could be reflected by the cell image. Overall, the findings of the present study laid the foundation for the discovery of MoAs of new drugs, based on image data. In addition, it provided a new method of drug repurposing for COVID-19.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-021-09727-5.

摘要

未标注

新型冠状病毒病(COVID-19)已在全球迅速传播。开发基于表型数据识别药物治疗活性的方法可以提高药物开发效率。在此,使用一种先进的机器学习方法,基于LINCS数据库中1105种药物的细胞图像特征来识别药物作用机制(MoA)。由于细胞图像的多维特征受非实验因素影响,相似药物的特征差异很大,且存在大量噪声,难以有效识别药物的作用机制。通过应用监督信息理论度量学习(ITML)算法,线性变换使具有相同作用机制的药物聚集在一起。通过将药物聚类到群落并进行富集分析,我们发现转移后的图像特征更有利于识别药物的作用机制。图像特征分析表明,不同特征在识别不同药物功能中发挥重要作用。显著影响细胞存活或增殖的药物,如细胞周期蛋白依赖性激酶抑制剂,更有可能在群落中富集,而其他药物可能分散分布。阻断病毒进入的氯喹和克罗米芬被聚类到同一个群落,表明细胞图像可以反映相似的作用机制。总体而言,本研究结果为基于图像数据发现新药的作用机制奠定了基础。此外,它为COVID-19提供了一种新的药物重新利用方法。

补充信息

在线版本包含可在10.1007/s11571-021-09727-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c992/10229521/1dc70050e48e/11571_2021_9727_Fig1_HTML.jpg

相似文献

1
2
Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing.
BMC Bioinformatics. 2023 May 24;24(1):215. doi: 10.1186/s12859-023-05343-8.
3
Machine Learning Applications in Drug Repurposing.
Interdiscip Sci. 2022 Mar;14(1):15-21. doi: 10.1007/s12539-021-00487-8. Epub 2022 Jan 23.
4
Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing.
Comput Biol Med. 2021 Nov;138:104856. doi: 10.1016/j.compbiomed.2021.104856. Epub 2021 Sep 10.
5
Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action.
Front Cell Infect Microbiol. 2021 Jun 29;11:688256. doi: 10.3389/fcimb.2021.688256. eCollection 2021.
6
A new computational drug repurposing method using established disease-drug pair knowledge.
Bioinformatics. 2019 Oct 1;35(19):3672-3678. doi: 10.1093/bioinformatics/btz156.
8
Predicting mechanism of action of novel compounds using compound structure and transcriptomic signature coembedding.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i376-i382. doi: 10.1093/bioinformatics/btab275.
10
Machine learning-based automatic detection of novel coronavirus (COVID-19) disease.
Multimed Tools Appl. 2022;81(10):13731-13750. doi: 10.1007/s11042-022-12508-9. Epub 2022 Feb 23.

引用本文的文献

1
Machine learning-assisted flexible wearable device for tyrosine detection.
RSC Adv. 2023 Aug 8;13(34):23788-23795. doi: 10.1039/d3ra02900j. eCollection 2023 Aug 4.
2
Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development.
Front Pharmacol. 2022 Aug 9;13:955648. doi: 10.3389/fphar.2022.955648. eCollection 2022.

本文引用的文献

1
Predicting Illness Severity and Short-Term Outcomes of COVID-19: A Retrospective Cohort Study in China.
Innovation (Camb). 2020 May 21;1(1):100007. doi: 10.1016/j.xinn.2020.04.007. Epub 2020 May 20.
4
Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose.
Clin Toxicol (Phila). 2021 Jan;59(1):12-23. doi: 10.1080/15563650.2020.1817479. Epub 2020 Sep 22.
5
Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2.
Nature. 2020 Sep;585(7826):588-590. doi: 10.1038/s41586-020-2575-3. Epub 2020 Jul 22.
6
COVID-19 and cardiovascular disease: What we know, what we think we know, and what we need to know.
J Mol Cell Cardiol. 2020 Jul;144:12-14. doi: 10.1016/j.yjmcc.2020.04.026. Epub 2020 Apr 24.
7
Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review.
JAMA. 2020 May 12;323(18):1824-1836. doi: 10.1001/jama.2020.6019.
8
Therapeutic options for the 2019 novel coronavirus (2019-nCoV).
Nat Rev Drug Discov. 2020 Mar;19(3):149-150. doi: 10.1038/d41573-020-00016-0.
9
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507. Epub 2020 Feb 19.
10
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
Cell Res. 2020 Mar;30(3):269-271. doi: 10.1038/s41422-020-0282-0. Epub 2020 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验