Suppr超能文献

2019冠状病毒病药物重新利用:一个基于网络的框架,用于探索生物医学文献和临床试验以寻找可能的治疗方法。

COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments.

作者信息

Hamed Ahmed Abdeen, Fandy Tamer E, Tkaczuk Karolina L, Verspoor Karin, Lee Byung Suk

机构信息

School of Cybersecurity, Data Science and Computing, Norwich University, Northfield, VT 05663, USA.

Sano Centre for Computational Medicine, 30-072 Kraków, Poland.

出版信息

Pharmaceutics. 2022 Mar 4;14(3):567. doi: 10.3390/pharmaceutics14030567.

Abstract

BACKGROUND

With the Coronavirus becoming a new reality of our world, global efforts continue to seek answers to many questions regarding the spread, variants, vaccinations, and medications. Particularly, with the emergence of several strains (e.g., Delta, Omicron), vaccines will need further development to offer complete protection against the new variants. It is critical to identify antiviral treatments while the development of vaccines continues. In this regard, the repurposing of already FDA-approved drugs remains a major effort. In this paper, we investigate the hypothesis that a combination of FDA-approved drugs may be considered as a candidate for COVID-19 treatment if (1) there exists an evidence in the COVID-19 biomedical literature that suggests such a combination, and (2) there is match in the clinical trials space that validates this drug combination.

METHODS

We present a computational framework that is designed for detecting drug combinations, using the following components (a) a Text-mining module: to extract drug names from the abstract section of the biomedical publications and the intervention/treatment sections of clinical trial records. (b) a network model constructed from the drug names and their associations, (c) a clique similarity algorithm to identify candidate drug treatments.

RESULT AND CONCLUSIONS

Our framework has identified treatments in the form of two, three, or four drug combinations (e.g., hydroxychloroquine, doxycycline, and azithromycin). The identifications of the various treatment candidates provided sufficient evidence that supports the trustworthiness of our hypothesis.

摘要

背景

随着新冠病毒成为我们世界的新现实,全球各方持续努力探寻有关病毒传播、变种、疫苗接种及药物治疗等诸多问题的答案。特别是,随着几种毒株(如德尔塔、奥密克戎)的出现,疫苗需要进一步研发以提供针对新变种的全面保护。在疫苗研发持续推进的同时,确定抗病毒治疗方法至关重要。在这方面,重新利用已获美国食品药品监督管理局(FDA)批准的药物仍是一项主要工作。在本文中,我们研究这样一个假设:如果(1)在新冠病毒生物医学文献中有证据表明某种FDA批准药物的组合可行,且(2)在临床试验领域有匹配情况验证这种药物组合,那么该组合可被视为新冠治疗的候选方案。

方法

我们提出一个用于检测药物组合的计算框架,该框架使用以下组件:(a)一个文本挖掘模块:从生物医学出版物的摘要部分以及临床试验记录的干预/治疗部分提取药物名称。(b)一个由药物名称及其关联关系构建的网络模型,(c)一种团相似性算法以识别候选药物治疗方案。

结果与结论

我们的框架已识别出以两种、三种或四种药物组合形式存在的治疗方案(如羟氯喹、强力霉素和阿奇霉素)。各种候选治疗方案的识别提供了充分证据,支持了我们假设的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76c5/8955179/5b63f17b2f76/pharmaceutics-14-00567-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验