Suppr超能文献

基于微调深度卷积神经网络的SPECT图像中残余甲状腺组织的分类与诊断

Classification and Diagnosis of Residual Thyroid Tissue in SPECT Images Based on Fine-Tuning Deep Convolutional Neural Network.

作者信息

Guo Yinxiang, Xu Jianing, Li Xiangzhi, Zheng Lin, Pan Wei, Qiu Meiting, Mao Shuyi, Huang Dongfei, Yang Xiaobo

机构信息

Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, China.

School of Science, Guangxi University of Science and Technology, Liuzhou, China.

出版信息

Front Oncol. 2021 Oct 28;11:762643. doi: 10.3389/fonc.2021.762643. eCollection 2021.

Abstract

Patients with thyroid cancer will take a small dose of I after undergoing a total thyroidectomy. Single-photon emission computed tomography (SPECT) is used to diagnose whether thyroid tissue remains in the body. However, it is difficult for human eyes to observe the specificity of SPECT images in different categories, and it is difficult for doctors to accurately diagnose the residual thyroid tissue in patients based on SPECT images. At present, the research on the classification of thyroid tissue residues after thyroidectomy is still in a blank state. This paper proposes a ResNet-18 fine-tuning method based on the convolutional neural network model. First, preprocess the SPECT images to improve the image quality and remove background interference. Secondly, use the preprocessed image samples to fine-tune the pretrained ResNet-18 model to obtain better features and finally use the Softmax classifier to diagnose the residual thyroid tissue. The method has been tested on SPECT images of 446 patients collected by local hospital and compared with the widely used lightweight network SqueezeNet model and ShuffleNetV2 model. Due to the small data set, this paper conducted 10 random grouping experiments. Each experiment divided the data set into training set and test set at a ratio of 3:1. The accuracy and sensitivity rates of the model proposed in this paper are 96.69% and 94.75%, which are significantly higher than other models (p < 0.05). The specificity and precision rates are 99.6% and 99.96%, respectively, and there is no significant difference compared with other models. (p > 0.05). The area under the curve of the proposed model, SqueezeNet, and ShuffleNetv2 are 0.988 (95% CI, 0.941-1.000), 0.898 (95% CI, 0.819-0.951) (p = 0.0257), and 0.885 (95% CI, 0.803-0.941) (p = 0.0057) (p < 0.05). We prove that this thyroid tissue residue classification system can be used as a computer-aided diagnosis method to effectively improve the diagnostic accuracy of thyroid tissue residues. While more accurately diagnosing patients with residual thyroid tissue in the body, we try our best to avoid the occurrence of overtreatment, which reflects its potential clinical application value.

摘要

甲状腺癌患者在接受全甲状腺切除术后会服用小剂量的碘。单光子发射计算机断层扫描(SPECT)用于诊断体内是否仍有甲状腺组织残留。然而,人眼很难观察到不同类别SPECT图像的特异性,医生也很难基于SPECT图像准确诊断患者体内残留的甲状腺组织。目前,关于甲状腺切除术后甲状腺组织残留分类的研究仍处于空白状态。本文提出了一种基于卷积神经网络模型的ResNet - 18微调方法。首先,对SPECT图像进行预处理以提高图像质量并去除背景干扰。其次,使用预处理后的图像样本对预训练的ResNet - 18模型进行微调以获得更好的特征,最后使用Softmax分类器诊断残留的甲状腺组织。该方法已在当地医院收集的446例患者的SPECT图像上进行了测试,并与广泛使用的轻量级网络SqueezeNet模型和ShuffleNetV2模型进行了比较。由于数据集较小,本文进行了10次随机分组实验。每次实验将数据集按3:1的比例分为训练集和测试集。本文提出的模型的准确率和灵敏度分别为96.69%和94.75%显著高于其他模型(p < 0.05)。特异性和精确率分别为99.6%和99.96%,与其他模型相比无显著差异(p > 0.05)。本文提出模型、SqueezeNet和ShuffleNetv2的曲线下面积分别为0.988(95% CI,0.941 - 1.000)、0.898(95% CI,0.819 - 0.951)(p = 0.0257)和0.885(95% CI,0.803 - 0.941)(p = 0.0057)(p < 0.05)。我们证明了这种甲状腺组织残留分类系统可作为一种计算机辅助诊断方法,有效提高甲状腺组织残留的诊断准确性。在更准确地诊断体内有残留甲状腺组织的患者的同时尽力避免过度治疗情况的发生,这体现了其潜在临床应用价值

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba25/8581297/85c4a03adeef/fonc-11-762643-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验