de Souza Filho Erito Marques, Fernandes Fernando de Amorim, Portela Maria Gabriela Ribeiro, Newlands Pedro Heliodoro, de Carvalho Lucas Nunes Dalbonio, Dos Santos Tadeu Francisco, Dos Santos Alair Augusto Sarmet M D, Mesquita Evandro Tinoco, Seixas Flávio Luiz, Mesquita Claudio Tinoco, Gismondi Ronaldo Altenburg
Post-graduation in Cardiovascular Sciences, Universidade Federal Fluminense, Niterói, Brazil.
Department of Languages and Technologies, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, Brazil.
Front Cardiovasc Med. 2021 Oct 29;8:741679. doi: 10.3389/fcvm.2021.741679. eCollection 2021.
Myocardial perfusion imaging (MPI) is an essential tool used to diagnose and manage patients with suspected or known coronary artery disease. Additionally, the General Data Protection Regulation (GDPR) represents a milestone about individuals' data security concerns. On the other hand, Machine Learning (ML) has had several applications in the most diverse knowledge areas. It is conceived as a technology with huge potential to revolutionize health care. In this context, we developed ML models to evaluate their ability to distinguish an individual's sex from MPI assessment. We used 260 polar maps (140 men/120 women) to train ML algorithms from a database of patients referred to a university hospital for clinically indicated MPI from January 2016 to December 2018. We tested 07 different ML models, namely, Classification and Regression Tree (CART), Naive Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Adaptive Boosting (AB), Random Forests (RF) and, Gradient Boosting (GB). We used a cross-validation strategy. Our work demonstrated that ML algorithms could perform well in assessing the sex of patients undergoing myocardial scintigraphy exams. All the models had accuracy greater than 82%. However, only SVM achieved 90%. KNN, RF, AB, GB had, respectively, 88, 86, 85, 83%. Accuracy standard deviation was lower in KNN, AB, and RF (0.06). SVM and RF had had the best area under the receiver operating characteristic curve (0.93), followed by GB (0.92), KNN (0.91), AB, and NB (0.9). SVM and AB achieved the best precision. Our results bring some challenges regarding the autonomy of patients who wish to keep sex information confidential and certainly add greater complexity to the debate about what data should be considered sensitive to the light of the GDPR.
心肌灌注成像(MPI)是用于诊断和管理疑似或已知冠状动脉疾病患者的重要工具。此外,《通用数据保护条例》(GDPR)是个人数据安全问题方面的一个里程碑。另一方面,机器学习(ML)在最多样化的知识领域有多种应用。它被认为是一种具有巨大潜力来变革医疗保健的技术。在此背景下,我们开发了ML模型以评估其从MPI评估中区分个体性别的能力。我们使用了260张极坐标图(140名男性/120名女性),从2016年1月至2018年12月转诊至大学医院进行临床指征MPI的患者数据库中训练ML算法。我们测试了7种不同的ML模型,即分类与回归树(CART)、朴素贝叶斯(NB)、K近邻(KNN)、支持向量机(SVM)、自适应增强(AB)、随机森林(RF)和梯度增强(GB)。我们采用了交叉验证策略。我们的工作表明,ML算法在评估接受心肌闪烁显像检查患者的性别方面表现良好。所有模型的准确率均高于82%。然而,只有SVM达到了90%。KNN、RF、AB、GB分别为88%、86%、85%、83%。KNN、AB和RF的准确率标准差较低(0.06)。SVM和RF的受试者工作特征曲线下面积最佳(0.93),其次是GB(0.92)、KNN(0.91)、AB和NB(0.9)。SVM和AB的精度最佳。我们的结果给希望对性别信息保密的患者的自主权带来了一些挑战,并且无疑给关于根据GDPR应将哪些数据视为敏感数据的辩论增添了更大的复杂性