Suppr超能文献

基于机器学习的随机森林预测甲状腺癌患者甲状腺切除术后生活质量下降。

Machine learning-based random forest for predicting decreased quality of life in thyroid cancer patients after thyroidectomy.

机构信息

Department of Breast Surgery, The Fourth Hospital of Hebei Medical University, No. 169 Tianshan Street, Shijiazhuang City, 050011, China.

Thyroid and Breast Surgery, Cangzhou Central Hospital, No. 16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China.

出版信息

Support Care Cancer. 2022 Mar;30(3):2507-2513. doi: 10.1007/s00520-021-06657-0. Epub 2021 Nov 16.

Abstract

OBJECTIVE

Decreased quality of life (QoL) in thyroid cancer patients after thyroidectomy is a common, but there is a lack of predictive methods for decreased QoL. This study aimed to construct a machine learning-based random forest for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy.

MATERIALS AND METHODS

Two hundred and eighty-six thyroid cancer patients after thyroidectomy were enrolled in this prospective cross-sectional study from November 2018 to June 2019, and were randomly assigned to training and validation cohorts at a ratio of 7:3. The European Organization for Research and Treatment of Cancer quality of life questionnaire version 3 (EORTC QLQ-C30) questionnaire was used to assess the QoL 3 months after thyroidectomy, and decreased QoL was defined as EORTC QLQ-C30 < 60 points. The random forest model was constructed for predicting decreased QoL in thyroid cancer patients after thyroidectomy.

RESULTS

The mean QoL 3 months after thyroidectomy was 65.93 ± 9.00 with 21.33% (61/286) decreased QoL. The main manifestation is fatigue in symptom scales and social functioning dysfunction in functional scales. The top seven most important indices affecting QoL were clinical stage, marital status, histological type, age, nerve injury symptom, economic income and surgery type. For random forest prediction model, the areas under the curve in the training and validation courts were 0.834 and 0.897, respectively.

CONCLUSION

The present study demonstrated that random forest model for predicting decreased QoL in thyroid cancer patients 3 months after thyroidectomy displayed relatively high accuracy. These findings should be applied clinically to optimise health care.

摘要

目的

甲状腺癌患者甲状腺切除术后生活质量(QoL)下降较为常见,但目前缺乏预测 QoL 下降的方法。本研究旨在构建一种基于机器学习的随机森林模型,预测甲状腺癌患者甲状腺切除术后 3 个月 QoL 下降的情况。

材料和方法

2018 年 11 月至 2019 年 6 月,前瞻性横断面研究纳入 286 例甲状腺癌术后患者,采用 7:3 的比例随机分为训练集和验证集。采用欧洲癌症研究与治疗组织生活质量问卷(EORTC QLQ-C30)评估甲状腺切除术后 3 个月的 QoL,EORTC QLQ-C30<60 分为 QoL 下降。构建随机森林模型预测甲状腺癌患者甲状腺切除术后 QoL 下降。

结果

甲状腺切除术后 3 个月的平均 QoL 为 65.93±9.00,其中 21.33%(61/286)患者 QoL 下降。症状量表的主要表现是疲劳,功能量表的主要表现是社会功能障碍。影响 QoL 的前 7 个最重要指标为临床分期、婚姻状况、组织学类型、年龄、神经损伤症状、经济收入和手术方式。随机森林预测模型在训练集和验证集的曲线下面积分别为 0.834 和 0.897。

结论

本研究表明,随机森林模型预测甲状腺癌患者甲状腺切除术后 3 个月 QoL 下降具有较高的准确性。这些发现应在临床实践中应用,以优化医疗保健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验