文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新兴人工智能在肝脏磁共振成像中的应用。

Emerging artificial intelligence applications in liver magnetic resonance imaging.

机构信息

Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.

Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.

出版信息

World J Gastroenterol. 2021 Oct 28;27(40):6825-6843. doi: 10.3748/wjg.v27.i40.6825.


DOI:10.3748/wjg.v27.i40.6825
PMID:34790009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8567471/
Abstract

Chronic liver diseases (CLDs) are becoming increasingly more prevalent in modern society. The use of imaging techniques for early detection, such as magnetic resonance imaging (MRI), is crucial in reducing the impact of these diseases on healthcare systems. Artificial intelligence (AI) algorithms have been shown over the past decade to excel at image-based analysis tasks such as detection and segmentation. When applied to liver MRI, they have the potential to improve clinical decision making, and increase throughput by automating analyses. With Liver diseases becoming more prevalent in society, the need to implement these techniques to utilize liver MRI to its full potential, is paramount. In this review, we report on the current methods and applications of AI methods in liver MRI, with a focus on machine learning and deep learning methods. We assess four main themes of segmentation, classification, image synthesis and artefact detection, and their respective potential in liver MRI and the wider clinic. We provide a brief explanation of some of the algorithms used and explore the current challenges affecting the field. Though there are many hurdles to overcome in implementing AI methods in the clinic, we conclude that AI methods have the potential to positively aid healthcare professionals for years to come.

摘要

慢性肝病(CLD)在现代社会中越来越普遍。使用成像技术(如磁共振成像(MRI))进行早期检测对于减轻这些疾病对医疗保健系统的影响至关重要。过去十年的研究表明,人工智能(AI)算法擅长进行基于图像的分析任务,例如检测和分割。当应用于肝脏 MRI 时,它们有可能通过自动化分析来改善临床决策并提高吞吐量。随着社会中肝脏疾病的日益普遍,迫切需要实施这些技术,以充分利用肝脏 MRI 的潜力。在本综述中,我们报告了 AI 方法在肝脏 MRI 中的当前方法和应用,重点介绍了机器学习和深度学习方法。我们评估了四个主要主题,包括分割、分类、图像合成和伪影检测,以及它们在肝脏 MRI 和更广泛的临床中的各自潜力。我们简要解释了一些使用的算法,并探讨了影响该领域的当前挑战。尽管在临床中实施 AI 方法存在许多障碍,但我们得出结论,AI 方法有可能在未来几年为医疗保健专业人员提供积极帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/8567471/b037d6f9e319/WJG-27-6825-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/8567471/c85b75cb10eb/WJG-27-6825-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/8567471/b037d6f9e319/WJG-27-6825-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/8567471/c85b75cb10eb/WJG-27-6825-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/8567471/b037d6f9e319/WJG-27-6825-g002.jpg

相似文献

[1]
Emerging artificial intelligence applications in liver magnetic resonance imaging.

World J Gastroenterol. 2021-10-28

[2]
Current and emerging artificial intelligence applications for pediatric abdominal imaging.

Pediatr Radiol. 2022-10

[3]
Artificial intelligence in multiparametric magnetic resonance imaging: A review.

Med Phys. 2022-10

[4]
Artificial intelligence in medical imaging of the liver.

World J Gastroenterol. 2019-2-14

[5]
Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities.

J Comput Assist Tomogr.

[6]
Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy.

Phys Med. 2021-3

[7]
Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review.

J Clin Neurosci. 2021-7

[8]
Current status of artificial intelligence analysis for endoscopic ultrasonography.

Dig Endosc. 2021-1

[9]
Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases.

Pharmacol Res. 2023-3

[10]
[Artificial intelligence in image analysis-fundamentals and new developments].

Hautarzt. 2020-9

引用本文的文献

[1]
Recent Advances in Magnetic Resonance Imaging for the Diagnosis of Liver Cancer: A Comprehensive Review.

Diagnostics (Basel). 2025-8-12

[2]
Trends in the applications of artificial intelligence in fatty liver diseases.

Hepatol Int. 2025-5-2

[3]
The current status and future directions of artificial intelligence in the prediction, diagnosis, and treatment of liver diseases.

Digit Health. 2025-4-13

[4]
Current State of Evidence for Use of MRI in LI-RADS.

J Magn Reson Imaging. 2025-9

[5]
Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis.

Cancers (Basel). 2022-8-20

[6]
Focal Liver Lesion MRI Feature Identification Using Efficientnet and MONAI: A Feasibility Study.

Cells. 2022-5-5

本文引用的文献

[1]
Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation.

IEEE Trans Med Imaging. 2021-11

[2]
Quantitative evaluation of focal liver lesions with T1 mapping using a phase-sensitive inversion recovery sequence on gadoxetic acid-enhanced MRI.

Eur J Radiol Open. 2020-12-24

[3]
Quantitative magnetic resonance imaging predicts individual future liver performance after liver resection for cancer.

PLoS One. 2020

[4]
Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI.

Eur Radiol. 2021-6

[5]
A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.

Rofo. 2021-3

[6]
Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?

Eur Radiol. 2021-1

[7]
Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks.

Med Phys. 2020-10

[8]
PSIGAN: Joint Probabilistic Segmentation and Image Distribution Matching for Unpaired Cross-Modality Adaptation-Based MRI Segmentation.

IEEE Trans Med Imaging. 2020-12

[9]
Channel width optimized neural networks for liver and vessel segmentation in liver iron quantification.

Comput Biol Med. 2020-7

[10]
Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors.

Ann Transl Med. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索