Suppr超能文献

基于弱监督多实例学习的组织病理学图像肺癌亚型分类

Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning.

作者信息

Zhao Lu, Xu Xiaowei, Hou Runping, Zhao Wangyuan, Zhong Hai, Teng Haohua, Han Yuchen, Fu Xiaolong, Sun Jianqi, Zhao Jun

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Department of radiation oncology, Shanghai Chest Hospital, Shanghai, People's Republic of China.

出版信息

Phys Med Biol. 2021 Dec 2;66(23). doi: 10.1088/1361-6560/ac3b32.

Abstract

Subtype classification plays a guiding role in the clinical diagnosis and treatment of non-small-cell lung cancer (NSCLC). However, due to the gigapixel of whole slide images (WSIs) and the absence of definitive morphological features, most automatic subtype classification methods for NSCLC require manually delineating the regions of interest (ROIs) on WSIs.In this paper, a weakly supervised framework is proposed for accurate subtype classification while freeing pathologists from pixel-level annotation. With respect to the characteristics of histopathological images, we design a two-stage structure with ROI localization and subtype classification. We first develop a method called multi-resolution expectation-maximization convolutional neural network (MR-EM-CNN) to locate ROIs for subsequent subtype classification. The EM algorithm is introduced to select the discriminative image patches for training a patch-wise network, with only WSI-wise labels available. A multi-resolution mechanism is designed for fine localization, similar to the coarse-to-fine process of manual pathological analysis. In the second stage, we build a novel hierarchical attention multi-scale network (HMS) for subtype classification. HMS can capture multi-scale features flexibly driven by the attention module and implement hierarchical features interaction.Experimental results on the 1002-patient Cancer Genome Atlas dataset achieved an AUC of 0.9602 in the ROI localization and an AUC of 0.9671 for subtype classification.The proposed method shows superiority compared with other algorithms in the subtype classification of NSCLC. The proposed framework can also be extended to other classification tasks with WSIs.

摘要

亚型分类在非小细胞肺癌(NSCLC)的临床诊断和治疗中起着指导作用。然而,由于全切片图像(WSIs)的超高像素以及缺乏明确的形态学特征,大多数NSCLC的自动亚型分类方法都需要在WSIs上手动勾勒感兴趣区域(ROIs)。本文提出了一种弱监督框架,用于准确的亚型分类,同时使病理学家从像素级注释中解脱出来。针对组织病理学图像的特点,我们设计了一个包含ROI定位和亚型分类的两阶段结构。我们首先开发了一种称为多分辨率期望最大化卷积神经网络(MR-EM-CNN)的方法来定位ROIs,以便进行后续的亚型分类。引入EM算法来选择有判别力的图像块,用于训练一个仅使用WSI级标签的逐块网络。设计了一种多分辨率机制用于精细定位,类似于手动病理分析的从粗到细的过程。在第二阶段,我们构建了一个新颖的分层注意力多尺度网络(HMS)用于亚型分类。HMS可以在注意力模块的灵活驱动下捕捉多尺度特征,并实现分层特征交互。在1002例患者的癌症基因组图谱数据集上的实验结果表明,ROI定位的AUC为0.9602,亚型分类的AUC为0.9671。与其他算法相比,该方法在NSCLC的亚型分类中表现出优越性。所提出的框架还可以扩展到其他使用WSIs的分类任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验