Suppr超能文献

用于全切片图像分类的二阶多实例学习模型。

Second-order multi-instance learning model for whole slide image classification.

机构信息

Key Lab of Advanced Design and Intelligent Computing (Ministry of Education), Dalian University, Dalian, 116622, People's Republic of China.

School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116600, People's Republic of China.

出版信息

Phys Med Biol. 2021 Jul 12;66(14). doi: 10.1088/1361-6560/ac0f30.

Abstract

Whole slide histopathology images (WSIs) play a crucial role in diagnosing lymph node metastasis of breast cancer, which usually lack fine-grade annotations of tumor regions and have large resolutions (typically 10 × 10pixels). Multi-instance learning has gradually become a dominant weakly supervised learning framework for WSI classification when only slide-level labels are available. In this paper, we develop a novel second-order multiple instances learning method (SoMIL) with an adaptive aggregator stacked by the attention mechanism and recurrent neural network (RNN) for histopathological image classification. To be specific, the proposed method applies a second-order pooling module (matrix power normalization covariance) for instance-level feature extraction of weakly supervised learning framework, attempting to explore second-order statistics of deep features for histopathological images. Additionally, we utilize an efficient channel attention mechanism to adaptively highlight the most discriminative instance features, followed by an RNN to update the final bag-level representation for the slide classification. Experimental results on the lymph node metastasis dataset of 2016 Camelyon grand challenge demonstrate the significant improvement of our proposed SoMIL framework compared with other state-of-the-art multi-instance learning methods. Moreover, in the external validation on 130 WSIs, SoMIL also achieves an impressive area under the curve performance that competitive to the fully-supervised framework.

摘要

全切片病理图像(WSI)在乳腺癌淋巴结转移的诊断中起着至关重要的作用,但其通常缺乏肿瘤区域的精细分级注释,且具有较大的分辨率(通常为 10×10 像素)。当仅提供幻灯片级别的标签时,多实例学习已逐渐成为 WSI 分类的主导弱监督学习框架。在本文中,我们开发了一种新颖的二阶多实例学习方法(SoMIL),该方法使用注意力机制和递归神经网络(RNN)堆叠的自适应聚合器进行组织病理学图像分类。具体来说,所提出的方法在弱监督学习框架中应用二阶池化模块(矩阵幂归一化协方差)进行实例级特征提取,尝试探索用于组织病理学图像的深度特征的二阶统计信息。此外,我们利用有效的通道注意力机制自适应地突出最具判别力的实例特征,然后由 RNN 为幻灯片分类更新最终的袋级表示。在 2016 年 Camelyon 大挑战的淋巴结转移数据集上的实验结果表明,与其他最先进的多实例学习方法相比,我们提出的 SoMIL 框架有了显著的改进。此外,在对 130 张 WSI 的外部验证中,SoMIL 还实现了令人印象深刻的曲线下面积性能,与完全监督框架相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验