文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过技术提高诊断水平:决策支持、人工智能及其他。

Enhancing Diagnosis Through Technology: Decision Support, Artificial Intelligence, and Beyond.

机构信息

University of California, San Diego, 9500 Gilman Drive, #0881 La Jolla, CA 92093-0881, USA.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, UT-Memorial Hermann Center for Healthcare Quality & Safety, Houston, TX 77030, USA. Electronic address: https://twitter.com/DeanSittig.

出版信息

Crit Care Clin. 2022 Jan;38(1):129-139. doi: 10.1016/j.ccc.2021.08.004.


DOI:10.1016/j.ccc.2021.08.004
PMID:34794627
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8608279/
Abstract

Patient care in intensive care environments is complex, time-sensitive, and data-rich, factors that make these settings particularly well-suited to clinical decision support (CDS). A wide range of CDS interventions have been used in intensive care unit environments. The field needs well-designed studies to identify the most effective CDS approaches. Evolving artificial intelligence and machine learning models may reduce information-overload and enable teams to take better advantage of the large volume of patient data available to them. It is vital to effectively integrate new CDS into clinical workflows and to align closely with the cognitive processes of frontline clinicians.

摘要

重症监护环境中的患者护理复杂、时效性强且数据丰富,这些因素使这些环境特别适合临床决策支持 (CDS)。在重症监护病房环境中已经使用了广泛的 CDS 干预措施。该领域需要精心设计的研究来确定最有效的 CDS 方法。不断发展的人工智能和机器学习模型可以减少信息过载,使团队能够更好地利用他们可获得的大量患者数据。将新的 CDS 有效整合到临床工作流程中,并与一线临床医生的认知过程紧密结合是至关重要的。

相似文献

[1]
Enhancing Diagnosis Through Technology: Decision Support, Artificial Intelligence, and Beyond.

Crit Care Clin. 2022-1

[2]
Artificial intelligence-based clinical decision support in pediatrics.

Pediatr Res. 2023-1

[3]
Clinical Informatics and Quality Improvement in the Pediatric Intensive Care Unit.

Pediatr Clin North Am. 2022-6

[4]
Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers.

J Am Coll Radiol. 2019-9

[5]
Intelligent Clinical Decision Support.

Sensors (Basel). 2022-2-12

[6]
Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic.

Ophthalmol Glaucoma. 2021

[7]
Intensive Care Unit Telemedicine in the Era of Big Data, Artificial Intelligence, and Computer Clinical Decision Support Systems.

Crit Care Clin. 2019-4-6

[8]
Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics.

Curr Probl Diagn Radiol. 2021

[9]
Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database.

Crit Care Med. 2011-5

[10]
Recommendations for the safe, effective use of adaptive CDS in the US healthcare system: an AMIA position paper.

J Am Med Inform Assoc. 2021-3-18

引用本文的文献

[1]
Analysis of CME Participation and Credit Compliance Among Healthcare Professionals: A Five-Year Study (2019-2023) From a Hospital in Guangdong, China.

Adv Med Educ Pract. 2025-8-26

[2]
Invasive and non-invasive monitoring in the ICU.

Trauma Surg Acute Care Open. 2025-4-14

[3]
Examining the Role of AI in Changing the Role of Nurses in Patient Care: Systematic Review.

JMIR Nurs. 2025-2-19

[4]
Accuracy of Artificial Intelligence Based Chatbots in Analyzing Orthopedic Pathologies: An Experimental Multi-Observer Analysis.

Diagnostics (Basel). 2025-1-19

[5]
Ten misconceptions regarding decision-making in critical care.

World J Crit Care Med. 2024-6-9

[6]
Artificial intelligence in forensic medicine and forensic dentistry.

J Forensic Odontostomatol. 2023-8-27

[7]
Artificial Intelligence in Medicine and Dentistry.

Acta Stomatol Croat. 2023-3

本文引用的文献

[1]
Bridging the feedback gap: a sociotechnical approach to informing clinicians of patients' subsequent clinical course and outcomes.

BMJ Qual Saf. 2021-7

[2]
Impact of a problem-oriented view on clinical data retrieval.

J Am Med Inform Assoc. 2021-4-23

[3]
A framework for making predictive models useful in practice.

J Am Med Inform Assoc. 2021-6-12

[4]
User-Centered Clinical Display Design Issues for Inpatient Providers.

Appl Clin Inform. 2020-10

[5]
Graphical Presentations of Clinical Data in a Learning Electronic Medical Record.

Appl Clin Inform. 2020-8

[6]
Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.

Neuroimaging Clin N Am. 2020-11

[7]
Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.

J Med Internet Res. 2020-7-20

[8]
Lost in Transition: A Call to Arms for Better Transition From ICU to Hospital Ward.

Crit Care Med. 2020-7

[9]
The Impact of Clinical Decision Support Alerts on Clostridioides difficile Testing: A Systematic Review.

Clin Infect Dis. 2021-3-15

[10]
Delirium-Beyond the CAM-ICU.

Crit Care Med. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索