Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Adv Sci (Weinh). 2022 Jan;9(2):e2103564. doi: 10.1002/advs.202103564. Epub 2021 Nov 19.
Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi-shank fluorescence neural probe that allows cell-type-specific electrophysiology from multiple deep-brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode-array pair are monolithically integrated on each tip of a minimal-form-factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro-optical recordings for cell-type-specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.
细胞类型特异性、活动依赖性的电生理学可以深入分析由各种细胞类型组成的复杂神经回路中的功能连接。迄今为止,基于光学的荧光记录设备能够监测细胞类型特异性的活动。然而,监测通常仅限于单个脑区,并且时间分辨率显著较低。本文提出了一种多模态多通道荧光神经探针,它可以以高时空分辨率从多个深部脑区进行细胞类型特异性电生理学研究。光电二极管和电极阵列对被单片集成在每个最小外形因子硅器件的尖端上。在表达 GCaMP6f 的小鼠中,成功地同时测量了荧光和电信号,并对分类的神经尖峰的细胞类型进行了识别。该探针具有在神经回路内的多个脑区进行细胞类型特异性电生理学的组合电-光记录的能力。有望实现对由各种细胞类型组成的复杂神经回路内部和跨回路的功能连接进行精确研究的新实验范例。