Suppr超能文献

美国的 COVID-19 疫苗接种动态:基于加利福尼亚州社会人口脆弱性指数的疫苗覆盖速度和承载能力。

COVID-19 Vaccination Dynamics in the US: Coverage Velocity and Carrying Capacity Based on Socio-demographic Vulnerability Indices in California.

机构信息

Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave., Los Angeles, CA, 90033, USA.

Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.

出版信息

J Immigr Minor Health. 2022 Feb;24(1):18-30. doi: 10.1007/s10903-021-01308-2. Epub 2021 Nov 19.

Abstract

Coronavirus disease 2019 (COVID-19) disparities among vulnerable populations are of paramount concern that extend to vaccine administration. With recent uptick in infection rates, dominance of the delta variant, and authorization of a third booster shot, understanding the population-level vaccine coverage dynamics and underlying sociodemographic factors is critical for achieving equity in public health outcomes. This study aimed to characterize the scope of vaccine inequity in California counties through modeling the trends of vaccination using the Social Vulnerability Index (SVI). Overall SVI, its four themes, and 9228 data points of daily vaccination numbers from December 15, 2020, to May 23, 2021, across all 58 California counties were used to model the growth velocity and anticipated maximum proportion of population vaccinated, defined as having received at least one dose of vaccine. Based on the overall SVI, the vaccination coverage velocity was lower in counties in the high vulnerability category (v = 0.0346, 95% CI 0.0334, 0.0358) compared to moderate (v = 0.0396, 95% CI 0.0385, 0.0408) and low (v = 0.0414, 95% CI 0.0403, 0.0425) vulnerability categories. SVI Theme 3 (minority status and language) yielded the largest disparity in coverage velocity between low and high-vulnerable counties (v = 0.0423 versus v = 0.035, P < 0.001). Based on the current trajectory, while counties in low-vulnerability category of overall SVI are estimated to achieve a higher proportion of vaccinated individuals, our models yielded a higher asymptotic maximum for highly vulnerable counties of Theme 3 (K = 0.544, 95% CI 0.527, 0.561) compared to low-vulnerability counterparts (K = 0.441, 95% CI 0.432, 0.450). The largest disparity in asymptotic proportion vaccinated between the low and high-vulnerability categories was observed in Theme 2 describing the household composition and disability (K = 0.602, 95% CI 0.592, 0.612; versus K = 0.425, 95% CI 0.413, 0.436). Overall, the large initial disparities in vaccination rates by SVI status attenuated over time, particularly based on Theme 3 status which yielded a large decrease in cumulative vaccination rate ratio of low to high-vulnerability categories from 1.42 to 0.95 (P = 0.002). This study provides insight into the problem of COVID-19 vaccine disparity across California which can help promote equity during the current pandemic and guide the allocation of future vaccines such as COVID-19 booster shots.

摘要

2019 年冠状病毒病(COVID-19)在弱势群体中的差异引起了极大的关注,这些差异还延伸到疫苗接种方面。随着最近感染率的上升、德尔塔变异株的主导地位以及第三针加强针的授权,了解人口层面的疫苗覆盖动态和潜在的社会人口因素对于实现公共卫生成果的公平性至关重要。本研究旨在通过使用社会脆弱性指数(SVI)对疫苗接种趋势进行建模,来描述加利福尼亚县疫苗接种的不公平程度。本研究使用了 SVI 总体情况、四个主题以及 2020 年 12 月 15 日至 2021 年 5 月 23 日期间加利福尼亚州 58 个县的每日接种数据(共 9228 个数据点),来对疫苗接种速度和预计的最大人口接种比例(定义为至少接种一剂疫苗)进行建模。根据 SVI 总体情况,高脆弱性类别(v=0.0346,95%CI 0.0334,0.0358)的疫苗接种覆盖速度低于中脆弱性(v=0.0396,95%CI 0.0385,0.0408)和低脆弱性(v=0.0414,95%CI 0.0403,0.0425)类别。SVI 主题 3(少数民族地位和语言)在低脆弱性和高脆弱性县之间的覆盖率速度方面存在最大差异(v=0.0423 与 v=0.035,P<0.001)。根据目前的趋势,尽管 SVI 总体低脆弱性类别的县预计将实现更高比例的接种人群,但我们的模型对主题 3 高脆弱性县(K=0.544,95%CI 0.527,0.561)的最大渐近最大值要高于低脆弱性对应县(K=0.441,95%CI 0.432,0.450)。在低脆弱性和高脆弱性类别之间,观察到最大的渐近接种比例差异的主题是描述家庭组成和残疾的主题 2(K=0.602,95%CI 0.592,0.612;而 K=0.425,95%CI 0.413,0.436)。总体而言,SVI 状况最初的疫苗接种率差异随着时间的推移而减弱,特别是基于主题 3 的状况,这导致低脆弱性和高脆弱性类别的累计疫苗接种率比从 1.42 降低到 0.95(P=0.002)。本研究提供了加利福尼亚州 COVID-19 疫苗差异的情况,这有助于在当前大流行期间促进公平,并指导未来 COVID-19 加强针等疫苗的分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc79/8603654/25694f8eaf5e/10903_2021_1308_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验