Suppr超能文献

捕获激子的慢俄歇复合实现了CdS-Pt纳米棒异质结构中的高效多电子转移。

Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in CdS-Pt Nanorod Heterostructures.

作者信息

Liu Yawei, Cullen David A, Lian Tianquan

机构信息

Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

J Am Chem Soc. 2021 Dec 8;143(48):20264-20273. doi: 10.1021/jacs.1c09125. Epub 2021 Nov 19.

Abstract

Solar-to-fuel conversion reaction often requires multiple proton-coupled electron transfer (PCET) processes powered by the energetic electrons and/or holes generated by the absorption of multiple photons. The effective coupling of multiple electron transfer from the light absorber with the multiple PCET reactions at the catalytic center is one of the key challenges in efficient and selective conversion of solar energy to chemical fuels. In this paper, we examine the dynamics of multiple electron transfer in quantum confined CdS nanorods with a Pt tip, in which the CdS rod functions as the light absorber and the Pt tip the catalytic center. By excitation-fluence-dependent transient absorption spectroscopic measurements, we show that the multiexciton Auger recombination rate in CdS rods follows a carrier-collision model, = ( - 1)/4, with a biexciton lifetime (1/) of 2.0 ± 0.2 ns. In CdS-Pt nanorods, electron transfer kinetics from the CdS conduction band edge to the Pt show negligible dependence on the excitation fluence, occurring with a half-life time of 5.6 ± 0.6 ps. The efficiency of multiple exciton dissociation by multiple electron transfer to Pt decreases from 100% in biexciton states to ∼41% at 22 exciton state due to the competition with Auger recombination. The half-lifetime of the -charge separated state recombination (with electrons in the Pt and holes in the CdS) decreases from 10 μs in the single charge separated state to 42 ns in nine charge separated states. Our findings suggest the possibility of driving multielectron photocatalytic reactions under intense illumination and controlling product selectivity through multielectron transfer.

摘要

太阳能到燃料的转换反应通常需要多个质子耦合电子转移(PCET)过程,这些过程由吸收多个光子产生的高能电子和/或空穴提供动力。光吸收体的多个电子转移与催化中心的多个PCET反应的有效耦合是将太阳能高效选择性地转化为化学燃料的关键挑战之一。在本文中,我们研究了带有铂尖端的量子受限硫化镉纳米棒中多个电子转移的动力学,其中硫化镉棒作为光吸收体,铂尖端作为催化中心。通过依赖激发通量的瞬态吸收光谱测量,我们表明硫化镉棒中的多激子俄歇复合率遵循载流子碰撞模型,(R = (n - 1)/4),双激子寿命((1/R))为(2.0 ± 0.2)纳秒。在硫化镉 - 铂纳米棒中,从硫化镉导带边缘到铂的电子转移动力学对激发通量的依赖性可忽略不计,半衰期为(5.6 ± 0.6)皮秒。由于与俄歇复合的竞争,通过多个电子转移到铂实现的多激子解离效率从双激子态的(100%)降至(22)激子态时的约(41%)。(-)电荷分离态复合(铂中有(n)个电子,硫化镉中有(m)个空穴)的半衰期从单电荷分离态的(10)微秒降至九个电荷分离态时的(42)纳秒。我们的研究结果表明,在强光照射下驱动多电子光催化反应并通过多电子转移控制产物选择性是有可能的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验