Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; St. Petersburg Academic University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):2571-2583. doi: 10.1016/j.jcis.2021.10.187. Epub 2021 Nov 2.
Currently, alpha-emitting radionuclide Ac is one of the most promising isotopes in alpha therapy due to its high linear energy transfer during four sequential alpha decays. However, the main obstacle preventing the full introduction of Ac into clinical practice is the lack of stable retention of radionuclides, leading to free circulation of toxic isotopes in the body. In this work, the surface of silica nanoparticles (SiO NPs) has been modified with metallic shells composed of titanium dioxide (TiO) and gold (Au) nanostructures to improve the retention of Ac and its decay products within the developed nanocarriers. In vitro and in vivo studies in healthy mice show that the metallic surface coating of SiO NPs promotes an enhanced sequestering of radionuclides (Ac and its daughter isotopes) compared to non-modified SiO NPs for a prolonged period of time. Histological analysis reveals that for the period of 3-10 d after the injections, the developed nanocarriers have no significant toxic effects in mice. At the same time, almost no accumulation of leaked radionuclides can be detected in non-target organs (e.g., in the kidneys). In contrast, non-modified carriers (SiO NPs) demonstrate the release of free radionuclides, which are distributed over the whole animal body with the consequent morphological changes in the lung, liver and kidney tissues. These results highlight the potential of the developed nanocarriers to be utilized as radionuclide delivery systems and offer an insight into design rules for the fabrication of new nanotherapeutic agents.
目前,由于在四次连续的α衰变过程中具有高线性能量转移,放射性核素 Ac 是α治疗中最有前途的同位素之一。然而,阻止 Ac 完全引入临床实践的主要障碍是缺乏放射性核素的稳定保留,导致有毒同位素在体内自由循环。在这项工作中,二氧化硅纳米粒子(SiO NPs)的表面用由二氧化钛(TiO)和金(Au)纳米结构组成的金属壳进行了修饰,以提高开发的纳米载体中 Ac 及其衰变产物的保留率。在健康小鼠的体外和体内研究表明,与未修饰的 SiO NPs 相比,SiO NPs 的金属表面涂层可在较长时间内促进放射性核素(Ac 及其子同位素)的增强隔离。组织学分析表明,在注射后 3-10 天期间,开发的纳米载体在小鼠中没有明显的毒性作用。同时,几乎检测不到泄漏的放射性核素在非靶器官(例如肾脏)中的积累。相比之下,未修饰的载体(SiO NPs)表现出游离放射性核素的释放,这些放射性核素分布在整个动物体内,导致肺、肝和肾组织的形态变化。这些结果突出了开发的纳米载体作为放射性核素递送系统的潜力,并为新的纳米治疗剂的制造提供了设计规则的见解。