Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China.
Shanghai United Imaging Healthcare, Co. Ltd., Jiading, China.
J Appl Clin Med Phys. 2022 Feb;23(2):e13470. doi: 10.1002/acm2.13470. Epub 2021 Nov 22.
Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers.
Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB-Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison.
The mean DSC, MSD, and HD values for our DL-based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto-segmentations to meet the clinical requirements. The contouring accuracy of the DL-based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1).
DL-based auto-segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer.
由于放射治疗对于宫颈癌的治疗不可或缺,因此准确、高效地勾画放射靶区至关重要。我们评估了一种基于深度学习(DL)的自动勾画算法,用于宫颈癌的临床靶区(CTV)自动勾画。
收集了 535 例接受根治性或术后放疗的宫颈癌患者的计算机断层扫描(CT)数据集。开发了一种基于 VB-Net 的 DL 工具,用于在根治性放疗组中勾画盆腔淋巴结引流区(dCTV1)和宫旁区(dCTV2)的 CTV。训练/验证/测试数量为 157/20/23。在术后放疗组中勾画盆腔淋巴结引流区(pCTV1)的 CTV。训练/验证/测试数量为 272/30/33。使用 Dice 相似系数(DSC)、平均表面距离(MSD)和 Hausdorff 距离(HD)评估勾画准确性。记录勾画时间以进行效率比较。
基于 DL 的工具的平均 DSC、MSD 和 HD 值分别为 dCTV1 的 0.88/1.32mm/21.60mm、dCTV2 的 0.70/2.42mm/22.44mm 和 pCTV1 的 0.86/1.15mm/20.78mm。仅需要对 63.5%的自动勾画进行少量修改即可满足临床要求。基于 DL 的工具的勾画准确性可与资深放射肿瘤学家相媲美,优于初级/中级放射肿瘤学家。此外,DL 辅助提高了初级放射肿瘤学家对 dCTV2 和 pCTV1 勾画的性能(dCTV2 的平均 DSC 增加 0.20,pCTV1 的平均 DSC 增加 0.03;dCTV2 的平均勾画时间减少 9.8 分钟,pCTV1 的平均勾画时间减少 28.9 分钟)。
基于 DL 的自动勾画可提高 CTV 勾画准确性、减少勾画时间,并提高治疗宫颈癌的临床效率。