Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China.
Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
Med Phys. 2021 Jul;48(7):3968-3981. doi: 10.1002/mp.14898. Epub 2021 May 19.
Accurately delineating clinical target volumes (CTV) is essential for completing radiotherapy plans but is time-consuming, labor-intensive, and prone to inter-observer variation. Automating CTV delineation has the benefits of both speeding up contouring process and improving the quality of contours. Recently, auto-segmentation approaches based on deep learning have achieved some improvements. However, unlike organ segmentation, the CTV contains potential tumor spread tissues or subclinical disease tissues, resulting in poorly defined margin interface and irregular shape. It is not reasonable to directly apply the deep learning segmentation algorithms to CTV tasks without considering the unique characteristics of shape and margin. In this work, we propose a novel automatic CTV delineation algorithm based on deep learning addressing the unique shape and margin challenges.
Our deep learning method, called RA-CTVNet, segments the CTV from cervical cancer CT images. RA-CTVNet denotes our automatic CTV delineation algorithm based on deep learning with Area-aware reweight strategy and Recursive refinement strategy. (1) In order to process the whole-volume CT images and delineate all CTVs in one shot, our method is built upon the popular 3D Unet architecture. We further extend it with robust residual learning and squeeze-and-excitation blocks for better feature representation. (2) We propose area-aware reweight strategy which assigns different weights for different slices. The core is adjusting model's attention to each slice. (3) In terms of the trade-off between providing performance improvements and meeting the limitations of GPU memory, we exploit a new recursive refinement strategy to address margin challenge.
This retrospective study included 462 patients diagnosed with cervical cancer who received radiotherapy from June 2017 to May 2019. Extensive experiments were conducted to evaluate performance of RA-CTVNet. First, compared to different network architectures, RA-CTVNet achieved improvements in Dice similarity coefficient (DSC). Second, we conducted ablation study. The results showed that compared to the backbone, area-aware reweight strategy increased DSC by 3.3% on average and recursive refinement strategy further increased DSC by 1.6% on average. Then, we compared our method with three human experts. Our RA-CTVNet performed better than two experts while comparably to the third expert. Finally, a multicenter evaluation was conducted to verify the accuracy and generalizability.
Our findings show that deep learning is able to offer an efficient framework for automatic CTV delineation. The tailored RA-CTVNet can improve the quality of CTV contours, which has great potential for reducing the burden of experts and increasing the accuracy of delineation. In the future, if with more training data, further improvements are possible, bringing this approach closer to real clinical practice.
准确勾画临床靶区(CTV)对于完成放射治疗计划至关重要,但这既耗时又费力,并且容易受到观察者间的差异影响。自动勾画 CTV 具有加快勾画过程和提高轮廓质量的双重优势。最近,基于深度学习的自动分割方法已经取得了一些进展。然而,与器官分割不同,CTV 包含潜在的肿瘤扩散组织或亚临床疾病组织,因此边界界面定义不明确,形状不规则。如果不考虑形状和边界的独特特征,直接将深度学习分割算法应用于 CTV 任务是不合理的。在这项工作中,我们提出了一种新的基于深度学习的自动 CTV 勾画算法,该算法解决了形状和边界的独特挑战。
我们的深度学习方法称为 RA-CTVNet,用于从宫颈癌 CT 图像中分割 CTV。RA-CTVNet 表示我们基于深度学习的自动 CTV 勾画算法,具有基于区域的重新加权策略和递归细化策略。(1)为了处理整个容积的 CT 图像并一次性勾画所有 CTV,我们的方法建立在流行的 3D Unet 架构之上。我们进一步通过稳健的残差学习和挤压激励模块对其进行扩展,以获得更好的特征表示。(2)我们提出了基于区域的重新加权策略,为不同的切片分配不同的权重。核心是调整模型对每个切片的注意力。(3)为了在提供性能提升和满足 GPU 内存限制之间取得平衡,我们利用了一种新的递归细化策略来解决边界挑战。
这项回顾性研究包括了 462 名被诊断为宫颈癌并在 2017 年 6 月至 2019 年 5 月接受放疗的患者。我们进行了广泛的实验来评估 RA-CTVNet 的性能。首先,与不同的网络架构相比,RA-CTVNet 在骰子相似系数(DSC)方面取得了改进。其次,我们进行了消融研究。结果表明,与骨干网络相比,基于区域的重新加权策略平均提高了 3.3%的 DSC,而递归细化策略进一步平均提高了 1.6%的 DSC。然后,我们将我们的方法与三位人类专家进行了比较。与两位专家相比,我们的 RA-CTVNet 表现更好,与第三位专家的表现相当。最后,我们进行了多中心评估,以验证其准确性和泛化能力。
我们的研究结果表明,深度学习能够为自动 CTV 勾画提供一个高效的框架。经过定制的 RA-CTVNet 可以提高 CTV 轮廓的质量,这对于减轻专家的负担和提高勾画的准确性具有很大的潜力。在未来,如果有更多的训练数据,进一步的改进是可能的,这将使该方法更接近实际的临床实践。