Suppr超能文献

深度学习图像分析与癌症病理学中基因组数据的整合:系统综述。

Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review.

机构信息

Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Medicine III, RWTH Aachen University Hospital, Aachen, Germany; Medical Oncology, National Center for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany.

出版信息

Eur J Cancer. 2022 Jan;160:80-91. doi: 10.1016/j.ejca.2021.10.007. Epub 2021 Nov 19.

Abstract

BACKGROUND

Over the past decade, the development of molecular high-throughput methods (omics) increased rapidly and provided new insights for cancer research. In parallel, deep learning approaches revealed the enormous potential for medical image analysis, especially in digital pathology. Combining image and omics data with deep learning tools may enable the discovery of new cancer biomarkers and a more precise prediction of patient prognosis. This systematic review addresses different multimodal fusion methods of convolutional neural network-based image analyses with omics data, focussing on the impact of data combination on the classification performance.

METHODS

PubMed was screened for peer-reviewed articles published in English between January 2015 and June 2021 by two independent researchers. Search terms related to deep learning, digital pathology, omics, and multimodal fusion were combined.

RESULTS

We identified a total of 11 studies meeting the inclusion criteria, namely studies that used convolutional neural networks for haematoxylin and eosin image analysis of patients with cancer in combination with integrated omics data. Publications were categorised according to their endpoints: 7 studies focused on survival analysis and 4 studies on prediction of cancer subtypes, malignancy or microsatellite instability with spatial analysis.

CONCLUSIONS

Image-based classifiers already show high performances in prognostic and predictive cancer diagnostics. The integration of omics data led to improved performance in all studies described here. However, these are very early studies that still require external validation to demonstrate their generalisability and robustness. Further and more comprehensive studies with larger sample sizes are needed to evaluate performance and determine clinical benefits.

摘要

背景

在过去的十年中,分子高通量方法(组学)的发展迅速,并为癌症研究提供了新的见解。与此同时,深度学习方法揭示了医学图像分析的巨大潜力,尤其是在数字病理学领域。将图像和组学数据与深度学习工具相结合,可能能够发现新的癌症生物标志物,并更准确地预测患者的预后。本系统评价探讨了基于卷积神经网络的图像分析与组学数据的不同多模态融合方法,重点关注数据组合对分类性能的影响。

方法

两名独立研究人员在 2015 年 1 月至 2021 年 6 月期间,在 PubMed 上筛选了以英文发表的同行评议文章。检索词涉及深度学习、数字病理学、组学和多模态融合。

结果

我们共确定了 11 项符合纳入标准的研究,即使用卷积神经网络对癌症患者的苏木精和伊红图像进行分析,并结合整合的组学数据。根据研究终点对出版物进行分类:7 项研究侧重于生存分析,4 项研究侧重于利用空间分析预测癌症亚型、恶性程度或微卫星不稳定性。

结论

基于图像的分类器在预后和预测性癌症诊断方面已经表现出较高的性能。在这里描述的所有研究中,整合组学数据都导致了性能的提高。然而,这些都是非常早期的研究,仍然需要外部验证来证明其普遍性和稳健性。需要进一步更全面的研究,以评估性能并确定临床获益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验