Suppr超能文献

基于机器学习方法的痤疮宏基因组测序分析:单数据集和多数据集方法的应用

Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data.

机构信息

Beijing Key Laboratory of Big Data Technology for Food Safety, School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.

出版信息

Comput Math Methods Med. 2021 Nov 13;2021:8008731. doi: 10.1155/2021/8008731. eCollection 2021.

Abstract

The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic methods in recent years. In this paper, machine learning methods are used to analyze metagenomic sequencing data of acne, i.e., all kinds of lipids in the face skin. Firstly, lipids data of the diseased skin (DS) samples and the healthy skin (HS) samples of acne patients and the normal control (NC) samples of healthy person are, respectively, analyzed by using principal component analysis (PCA) and kernel principal component analysis (KPCA). Then, the lipids which have main influence on each kind of sample are obtained. In addition, a multiset canonical correlation analysis (MCCA) is utilized to get lipids which can differentiate the face skins of the above three samples. The experimental results show the machine learning methods can effectively analyze metagenomic sequencing data of acne. According to the results, lipids which only influence one of the three samples or the lipids which simultaneously have different degree of influence on these three samples can be used as indicators to judge skin statuses.

摘要

人类健康状况可以通过研究和分析人类微生物组来评估。痤疮是一种常见的皮肤病,其发病率逐年上升。近年来,人们采用宏基因组学方法研究了对痤疮影响很大的脂质。本文使用机器学习方法分析了痤疮的宏基因组测序数据,即痤疮患者的面部皮肤中的各种脂质。首先,分别对痤疮患者的病变皮肤(DS)样本和健康皮肤(HS)样本以及健康人的正常对照(NC)样本的脂质数据进行主成分分析(PCA)和核主成分分析(KPCA)。然后,获得对每种样本有主要影响的脂质。此外,还利用多集典范相关分析(MCCA)获得能够区分上述三种样本面部皮肤的脂质。实验结果表明,机器学习方法可以有效地分析痤疮的宏基因组测序数据。根据结果,可以将仅影响三种样本之一的脂质或同时对三种样本有不同程度影响的脂质用作判断皮肤状态的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/785e/8605909/cfc8696fc64d/CMMM2021-8008731.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验