Rouabah M T, Tounsi A, Belaloui N E
Laboratoire de Physique Mathématique et Subatomique Frères Mentouri University Constantine - 1, Ain El Bey Road, Constantine 25017, Algeria.
Sci Afr. 2021 Nov;14:e01050. doi: 10.1016/j.sciaf.2021.e01050. Epub 2021 Nov 18.
A dynamical epidemic model optimized using a genetic algorithm and a cross-validation method to overcome the overfitting problem is proposed. The cross-validation procedure is applied so that available data are split into a training subset used to fit the algorithm's parameters, and a smaller subset used for validation. This process is tested on Italy, Spain, Germany, and South Korea cases before being applied to Algeria. Interestingly, our study reveals an inverse relationship between the size of the training sample and the number of generations required in the genetic algorithm. Moreover, the enhanced compartmental model presented in this work has proven to be a reliable tool to estimate key epidemic parameters and the non-measurable asymptomatic infected portion of the susceptible population to establish a realistic nowcast and forecast of the epidemic's evolution. The model is employed to study the COVID-19 outbreak dynamics in Algeria between February 25th, 2020, and May 24th, 2020. The basic reproduction number and effective reproduction number on May 24th, after three months of the outbreak, are estimated to be 3.78 (95% CI 3.033-4.53) and 0.651 (95% CI 0.539-0.761), respectively. Disease incidence, CFR, and IFR are also calculated. Numerical programs developed for this study are made publicly accessible for reproduction and further use.
提出了一种使用遗传算法和交叉验证方法进行优化以克服过拟合问题的动态流行病模型。应用交叉验证程序,将可用数据分为用于拟合算法参数的训练子集和用于验证的较小子集。在应用于阿尔及利亚之前,该过程在意大利、西班牙、德国和韩国的病例上进行了测试。有趣的是,我们的研究揭示了训练样本大小与遗传算法所需代数之间的反比关系。此外,本文提出的增强型 compartmental 模型已被证明是一种可靠的工具,可用于估计关键的流行参数以及易感人群中不可测量的无症状感染部分,以建立对疫情演变的现实的现况预测和预测。该模型用于研究 2020 年 2 月 25 日至 2020 年 5 月 24 日期间阿尔及利亚的 COVID-19 疫情动态。疫情爆发三个月后的 5 月 24 日,基本再生数和有效再生数估计分别为 3.78(95%可信区间 3.033 - 4.53)和 0.651(95%可信区间 0.539 - 0.761)。还计算了疾病发病率、病死率和感染致死率。为本研究开发的数值程序已公开提供以供复制和进一步使用。