Ogidi Franklin C, Eramian Mark G, Stavness Ian
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada.
Plant Phenomics. 2023;5:0037. doi: 10.34133/plantphenomics.0037. Epub 2023 Apr 3.
The rise of self-supervised learning (SSL) methods in recent years presents an opportunity to leverage unlabeled and domain-specific datasets generated by image-based plant phenotyping platforms to accelerate plant breeding programs. Despite the surge of research on SSL, there has been a scarcity of research exploring the applications of SSL to image-based plant phenotyping tasks, particularly detection and counting tasks. We address this gap by benchmarking the performance of 2 SSL methods-momentum contrast (MoCo) v2 and dense contrastive learning (DenseCL)-against the conventional supervised learning method when transferring learned representations to 4 downstream (target) image-based plant phenotyping tasks: wheat head detection, plant instance detection, wheat spikelet counting, and leaf counting. We studied the effects of the domain of the pretraining (source) dataset on the downstream performance and the influence of redundancy in the pretraining dataset on the quality of learned representations. We also analyzed the similarity of the internal representations learned via the different pretraining methods. We find that supervised pretraining generally outperforms self-supervised pretraining and show that MoCo v2 and DenseCL learn different high-level representations compared to the supervised method. We also find that using a diverse source dataset in the same domain as or a similar domain to the target dataset maximizes performance in the downstream task. Finally, our results show that SSL methods may be more sensitive to redundancy in the pretraining dataset than the supervised pretraining method. We hope that this benchmark/evaluation study will guide practitioners in developing better SSL methods for image-based plant phenotyping.
近年来,自监督学习(SSL)方法的兴起为利用基于图像的植物表型分析平台生成的未标记和特定领域数据集以加速植物育种计划提供了契机。尽管对SSL的研究激增,但探索SSL在基于图像的植物表型分析任务(特别是检测和计数任务)中的应用的研究却很少。我们通过将两种SSL方法——动量对比(MoCo)v2和密集对比学习(DenseCL)——与传统监督学习方法在将学习到的表示转移到4个下游(目标)基于图像的植物表型分析任务(小麦穗检测、植物实例检测、小麦小穗计数和叶片计数)时的性能进行基准测试,来填补这一空白。我们研究了预训练(源)数据集的领域对下游性能的影响以及预训练数据集中冗余对学习到的表示质量的影响。我们还分析了通过不同预训练方法学习到的内部表示的相似性。我们发现监督预训练通常优于自监督预训练,并表明与监督方法相比,MoCo v2和DenseCL学习到不同的高级表示。我们还发现,在与目标数据集相同或相似的领域中使用多样化的源数据集可使下游任务的性能最大化。最后,我们的结果表明,SSL方法可能比监督预训练方法对预训练数据集中的冗余更敏感。我们希望这项基准/评估研究将指导从业者开发更好的基于图像的植物表型分析SSL方法。