Suppr超能文献

基于多阈值分割并考虑空间上下文信息的高效彩色图像分割方法——使用EMO算法

Efficient Approach to Color Image Segmentation Based on Multilevel Thresholding Using EMO Algorithm by Considering Spatial Contextual Information.

作者信息

Rangu Srikanth, Veramalla Rajagopal, Salkuti Surender Reddy, Kalagadda Bikshalu

机构信息

Department of ECE, Kakatiya Institute of Technology and Science, Warangal 506015, India.

Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Republic of Korea.

出版信息

J Imaging. 2023 Mar 23;9(4):74. doi: 10.3390/jimaging9040074.

Abstract

The process of image segmentation is partitioning an image into its constituent parts and is a significant approach for extracting interesting features from images. Over a couple of decades, many efficient image segmentation approaches have been formulated for various applications. Still, it is a challenging and complex issue, especially for color image segmentation. To moderate this difficulty, a novel multilevel thresholding approach is proposed in this paper based on the electromagnetism optimization (EMO) technique with an energy curve, named multilevel thresholding based on EMO and energy curve (MTEMOE). To compute the optimized threshold values, Otsu's variance and Kapur's entropy are deployed as fitness functions; both values should be maximized to locate optimal threshold values. In both Kapur's and Otsu's methods, the pixels of an image are classified into different classes based on the threshold level selected on the histogram. Optimal threshold levels give higher efficiency of segmentation; the EMO technique is used to find optimal thresholds in this research. The methods based on an image's histograms do not possess the spatial contextual information for finding the optimal threshold levels. To abolish this deficiency an energy curve is used instead of the histogram and this curve can establish the spatial relationship of pixels with their neighbor pixels. To study the experimental results of the proposed scheme, several color benchmark images are considered at various threshold levels and compared with other meta-heuristic algorithms: multi-verse optimization, whale optimization algorithm, and so on. The investigational results are illustrated in terms of mean square error, peak signal-to-noise ratio, the mean value of fitness reach, feature similarity, structural similarity, variation of information, and probability rand index. The results reveal that the proposed MTEMOE approach overtops other state-of-the-art algorithms to solve engineering problems in various fields.

摘要

图像分割过程是将一幅图像划分为其组成部分,是从图像中提取感兴趣特征的一种重要方法。在过去几十年中,已经为各种应用制定了许多有效的图像分割方法。然而,这仍然是一个具有挑战性和复杂性的问题,尤其是对于彩色图像分割。为了缓解这一困难,本文提出了一种基于电磁优化(EMO)技术和能量曲线的新型多级阈值处理方法,称为基于EMO和能量曲线的多级阈值处理(MTEMOE)。为了计算优化的阈值,采用大津方差和卡普尔熵作为适应度函数;这两个值都应最大化以找到最佳阈值。在卡普尔方法和大津方法中,图像的像素根据在直方图上选择的阈值水平被分类到不同的类别中。最佳阈值水平可提高分割效率;本研究中使用EMO技术来找到最佳阈值。基于图像直方图的方法在寻找最佳阈值水平时不具备空间上下文信息。为了消除这一缺陷,使用能量曲线代替直方图,并且该曲线可以建立像素与其相邻像素的空间关系。为了研究所提出方案的实验结果,考虑了几个不同阈值水平的彩色基准图像,并与其他元启发式算法进行比较:多宇宙优化、鲸鱼优化算法等。研究结果通过均方误差、峰值信噪比、适应度达到的平均值、特征相似度、结构相似度、信息变化和概率兰德指数进行说明。结果表明,所提出的MTEMOE方法优于其他现有算法,可解决各个领域的工程问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a5/10145584/3861542ac147/jimaging-09-00074-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验