Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
Department of Materials Science and Technology, University of Crete, Heraklion, Greece.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):3141-3150. doi: 10.1016/j.jcis.2021.11.038. Epub 2021 Nov 12.
Implant infections due to bacterial biofilms constitute a major healthcare challenge today. One way to address this clinical need is to modify the implant surface with an antimicrobial nanomaterial. Among such nanomaterials, nanosilver is arguably the most powerful one, due to its strong and broad antimicrobial activity. However, there is still a lack of understanding on how physicochemical characteristics of nanosilver coatings affect their antibiofilm activity. More specifically, the contributions of silver (Ag) ion-mediated vs. contact-based mechanisms to the observed antimicrobial activity are yet to be elucidated. To address this knowledge gap, we produce here nanosilver coatings on substrates by flame aerosol direct deposition that allows for facile control of the coating composition and Ag particle size. We systematically study the effect of (i) nanosilver content in composite Ag silica (SiO) coatings from 0 (pure SiO) up to 50 wt%, (ii) the Ag particle size and (iii) the coating thickness on the antibiofilm activity against Staphylococcus aureus (S. aureus), a clinically-relevant pathogen often present on the surface of surgically-installed implants. We show that the Ag ion concentration in solution largely drives the observed antibiofilm effect independently of Ag size and coating thickness. Furthermore, co-incubation of both pure SiO and nanosilver coatings in the same well also reveals that the antibiofilm effect stems predominantly from the released Ag ions, which is especially pronounced for coatings featuring the smallest Ag particle sizes, rather than direct bacterial contact inhibition. We also examine the biocompatibility of the developed nanosilver coatings in terms of pre-osteoblastic cell viability and proliferation, comparing it to that of pure SiO. This study lays the foundation for the rational design of nanosilver-based antibiofilm implant coatings.
由于细菌生物膜引起的植入物感染是当今医疗保健的主要挑战之一。解决这一临床需求的一种方法是通过使用抗菌纳米材料对植入物表面进行改性。在这些纳米材料中,纳米银由于其强大而广泛的抗菌活性,可以说是最有效的一种。然而,人们对纳米银涂层的物理化学特性如何影响其抗生物膜活性仍缺乏了解。更具体地说,银(Ag)离子介导与基于接触的机制对观察到的抗菌活性的贡献仍有待阐明。为了解决这一知识空白,我们通过火焰气溶胶直接沉积在基底上制备纳米银涂层,从而可以轻松控制涂层的组成和 Ag 颗粒大小。我们系统地研究了以下因素对金黄色葡萄球菌(S. aureus)抗生物膜活性的影响:(i)复合 Ag 二氧化硅(SiO)涂层中的纳米银含量(纯 SiO 至 50wt%),(ii)Ag 颗粒大小和(iii)涂层厚度。我们表明,溶液中的 Ag 离子浓度在很大程度上驱动了观察到的抗生物膜效应,而与 Ag 尺寸和涂层厚度无关。此外,在同一孔中共同孵育纯 SiO 和纳米银涂层也表明,抗生物膜效应主要源于释放的 Ag 离子,对于具有最小 Ag 颗粒尺寸的涂层尤为明显,而不是直接抑制细菌接触。我们还从原代成骨细胞活力和增殖的角度比较了纯 SiO 和开发的纳米银涂层的生物相容性。这项研究为基于纳米银的抗生物膜植入物涂层的合理设计奠定了基础。