Suppr超能文献

医学物理学家的机器学习和深度学习入门。

Introduction to machine and deep learning for medical physicists.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48103, USA.

Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Med Phys. 2020 Jun;47(5):e127-e147. doi: 10.1002/mp.14140.

Abstract

Recent years have witnessed tremendous growth in the application of machine learning (ML) and deep learning (DL) techniques in medical physics. Embracing the current big data era, medical physicists equipped with these state-of-the-art tools should be able to solve pressing problems in modern radiation oncology. Here, a review of the basic aspects involved in ML/DL model building, including data processing, model training, and validation for medical physics applications is presented and discussed. Machine learning can be categorized based on the underlying task into supervised learning, unsupervised learning, or reinforcement learning; each of these categories has its own input/output dataset characteristics and aims to solve different classes of problems in medical physics ranging from automation of processes to predictive analytics. It is recognized that data size requirements may vary depending on the specific medical physics application and the nature of the algorithms applied. Data processing, which is a crucial step for model stability and precision, should be performed before training the model. Deep learning as a subset of ML is able to learn multilevel representations from raw input data, eliminating the necessity for hand crafted features in classical ML. It can be thought of as an extension of the classical linear models but with multilayer (deep) structures and nonlinear activation functions. The logic of going "deeper" is related to learning complex data structures and its realization has been aided by recent advancements in parallel computing architectures and the development of more robust optimization methods for efficient training of these algorithms. Model validation is an essential part of ML/DL model building. Without it, the model being developed cannot be easily trusted to generalize to unseen data. Whenever applying ML/DL, one should keep in mind, according to Amara's law, that humans may tend to overestimate the ability of a technology in the short term and underestimate its capability in the long term. To establish ML/DL role into standard clinical workflow, models considering balance between accuracy and interpretability should be developed. Machine learning/DL algorithms have potential in numerous radiation oncology applications, including automatizing mundane procedures, improving efficiency and safety of auto-contouring, treatment planning, quality assurance, motion management, and outcome predictions. Medical physicists have been at the frontiers of technology translation into medicine and they ought to be prepared to embrace the inevitable role of ML/DL in the practice of radiation oncology and lead its clinical implementation.

摘要

近年来,机器学习(ML)和深度学习(DL)技术在医学物理学中的应用取得了巨大的发展。在当前的大数据时代,医学物理学家如果掌握了这些最先进的工具,就应该能够解决现代放射肿瘤学中的紧迫问题。在这里,我们回顾了医学物理应用中 ML/DL 模型构建的基本方面,包括数据处理、模型训练和验证。机器学习可以根据底层任务分为监督学习、无监督学习或强化学习;这些类别中的每一种都有自己的输入/输出数据集特征,旨在解决医学物理学中从流程自动化到预测分析等不同类别的问题。人们认识到,数据大小要求可能因具体的医学物理应用和应用的算法性质而异。数据处理是模型稳定性和精度的关键步骤,应在训练模型之前进行。深度学习作为 ML 的一个子集,能够从原始输入数据中学习多层次的表示,从而无需在经典 ML 中手工制作特征。它可以被认为是经典线性模型的扩展,但具有多层(深度)结构和非线性激活函数。“更深”的逻辑与学习复杂的数据结构有关,其实现得益于并行计算架构的最新进展和更有效的算法训练优化方法的发展。模型验证是 ML/DL 模型构建的一个重要组成部分。如果没有它,开发的模型就不容易被信任来推广到未知的数据。在应用 ML/DL 时,人们应该记住,根据阿玛拉定律,人们可能会在短期内高估一项技术的能力,而在长期内低估其能力。为了将 ML/DL 模型建立到标准的临床工作流程中,应该开发考虑准确性和可解释性之间平衡的模型。机器学习/DL 算法在许多放射肿瘤学应用中具有潜力,包括使日常程序自动化、提高自动勾画、治疗计划、质量保证、运动管理和结果预测的效率和安全性。医学物理学家一直处于技术向医学转化的前沿,他们应该准备好接受 ML/DL 在放射肿瘤学实践中的必然作用,并引领其临床实施。

相似文献

6
Medical image analysis using deep learning algorithms.医学影像的深度学习算法分析。
Front Public Health. 2023 Nov 7;11:1273253. doi: 10.3389/fpubh.2023.1273253. eCollection 2023.
10
A Tour of Unsupervised Deep Learning for Medical Image Analysis.医学图像分析的无监督深度学习之旅。
Curr Med Imaging. 2021;17(9):1059-1077. doi: 10.2174/1573405617666210127154257.

引用本文的文献

本文引用的文献

3
Sex and gender analysis improves science and engineering.性别分析能够改进科学和工程学。
Nature. 2019 Nov;575(7781):137-146. doi: 10.1038/s41586-019-1657-6. Epub 2019 Nov 6.
4
Deep Learning: A Review for the Radiation Oncologist.深度学习:放射肿瘤学家的综述
Front Oncol. 2019 Oct 1;9:977. doi: 10.3389/fonc.2019.00977. eCollection 2019.
6
Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis.机器的崛起:深度学习在癌症诊断中的进展
Trends Cancer. 2019 Mar;5(3):157-169. doi: 10.1016/j.trecan.2019.02.002. Epub 2019 Feb 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验