Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, 46020, Spain.
FISABIO Public Health (CSISP), Valencia, 46010, Spain.
Commun Biol. 2021 Nov 24;4(1):1322. doi: 10.1038/s42003-021-02846-z.
Efforts to eradicate tuberculosis are hampered by the rise and spread of antibiotic resistance. Several large-scale projects have aimed to specifically link clinical mutations to resistance phenotypes, but they were limited in both their explanatory and predictive powers. Here, we combine functional genomics and phylogenetic associations using clinical strain genomes to decipher the architecture of isoniazid resistance and search for new resistance determinants. This approach has allowed us to confirm the main target route of the antibiotic, determine the clinical relevance of redox metabolism as an isoniazid resistance mechanism and identify novel candidate genes harboring resistance mutations in strains with previously unexplained isoniazid resistance. This approach can be useful for characterizing how the tuberculosis bacilli acquire resistance to new antibiotics and how to forestall them.
抗结核工作受到抗生素耐药性上升和传播的阻碍。一些大型项目旨在将临床突变与耐药表型具体联系起来,但它们在解释和预测能力上都存在局限性。在这里,我们结合功能基因组学和系统发育关联,使用临床菌株基因组来破译异烟肼耐药性的结构,并寻找新的耐药决定因素。这种方法使我们能够确认抗生素的主要靶途径,确定氧化还原代谢作为异烟肼耐药机制的临床相关性,并确定以前无法解释的异烟肼耐药菌株中携带耐药突变的新候选基因。这种方法可用于描述结核分枝杆菌如何获得对新抗生素的耐药性,以及如何预防耐药性的产生。