Suppr超能文献

CMIP6模拟中干旱的概率评估

Probabilistic Evaluation of Drought in CMIP6 Simulations.

作者信息

Papalexiou Simon Michael, Rajulapati Chandra Rupa, Andreadis Konstantinos M, Foufoula-Georgiou Efi, Clark Martyn P, Trenberth Kevin E

机构信息

Department of Civil Engineering University of Calgary Calgary AB Canada.

Global Institute for Water Security University of Saskatchewan Saskatoon SK Canada.

出版信息

Earths Future. 2021 Oct;9(10):e2021EF002150. doi: 10.1029/2021EF002150. Epub 2021 Oct 11.

Abstract

As droughts have widespread social and ecological impacts, it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference between observed and simulated drought characteristics. Results show that many simulations have less than error in reproducing the observed drought summary statistics. The hypothesis that simulations and observations are described by the same distribution cannot be rejected for more than of the grids based on our distance framework. No single model stood out as demonstrating consistently better performance over large regions of the globe. The variance in drought statistics among the simulations is higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and identify a subset of best-performing models that are useful for impact assessments.

摘要

由于干旱具有广泛的社会和生态影响,制定长期适应和缓解策略以降低干旱脆弱性至关重要。气候模型在量化干旱变化方面很重要。在此,我们使用标准化降水指数(SPI)评估了来自17个模型的285个CMIP6历史模拟在三个观测数据集中再现干旱持续时间和严重程度的能力。我们使用了均值和标准差之外的汇总统计量,并基于赫林格距离设计了一个新颖的概率框架,以量化观测到的和模拟的干旱特征之间的差异。结果表明,许多模拟在再现观测到的干旱汇总统计量时误差较小。基于我们的距离框架,超过[X]%的网格不能拒绝模拟和观测由相同分布描述的假设。没有一个单一模型在全球大片区域表现出始终更好的性能。与其他纬度带相比,热带地区模拟中干旱统计量的方差更高。尽管模型很好地捕捉了干旱期的特征,但在低降水量方面存在相当大的偏差。SPI方面的良好模型性能并不意味着在模拟低降水量方面也有良好性能。我们的研究强调需要对气候模型模拟进行概率评估,以便既能找出模型弱点,又能识别出对影响评估有用的最佳表现模型子集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5e1/8596413/b5c70722198e/EFT2-9-e2021EF002150-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验