Suppr超能文献

在纵向肝脏 CT 扫描研究中自动检测新肿瘤和肿瘤负担评估。

Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies.

机构信息

The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Givat Ram Campus, 91904, Jerusalem, Israel.

Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.

出版信息

Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1945-1957. doi: 10.1007/s11548-017-1660-z. Epub 2017 Aug 30.

Abstract

PURPOSE

Radiological longitudinal follow-up of liver tumors in CT scans is the standard of care for disease progression assessment and for liver tumor therapy. Finding new tumors in the follow-up scan is essential to determine malignancy, to evaluate the total tumor burden, and to determine treatment efficacy. Since new tumors are typically small, they may be missed by examining radiologists.

METHODS

We describe a new method for the automatic detection and segmentation of new tumors in longitudinal liver CT studies and for liver tumors burden quantification. Its inputs are the baseline and follow-up CT scans, the baseline tumors delineation, and a tumor appearance prior model. Its outputs are the new tumors segmentations in the follow-up scan, the tumor burden quantification in both scans, and the tumor burden change. Our method is the first comprehensive method that is explicitly designed to find new liver tumors. It integrates information from the scans, the baseline known tumors delineations, and a tumor appearance prior model in the form of a global convolutional neural network classifier. Unlike other deep learning-based methods, it does not require large tagged training sets.

RESULTS

Our experimental results on 246 tumors, of which 97 were new tumors, from 37 longitudinal liver CT studies with radiologist approved ground-truth segmentations, yields a true positive new tumors detection rate of 86 versus 72% with stand-alone detection, and a tumor burden volume overlap error of 16%.

CONCLUSIONS

New tumors detection and tumor burden volumetry are important for diagnosis and treatment. Our new method enables a simplified radiologist-friendly workflow that is potentially more accurate and reliable than the existing one by automatically and accurately following known tumors and detecting new tumors in the follow-up scan.

摘要

目的

在 CT 扫描中对肝脏肿瘤进行影像学纵向随访是疾病进展评估和肝脏肿瘤治疗的标准。在随访扫描中发现新的肿瘤对于确定恶性肿瘤、评估总肿瘤负担以及确定治疗效果至关重要。由于新的肿瘤通常较小,放射科医生可能会遗漏它们。

方法

我们描述了一种新的方法,用于自动检测和分割纵向肝脏 CT 研究中的新肿瘤,并对肝脏肿瘤负担进行量化。其输入是基线和随访 CT 扫描、基线肿瘤勾画以及肿瘤外观先验模型。其输出是随访扫描中新肿瘤的分割、两扫描中的肿瘤负担量化以及肿瘤负担变化。我们的方法是第一个专门用于发现新肝脏肿瘤的综合方法。它将来自扫描、基线已知肿瘤勾画以及肿瘤外观先验模型的信息整合到一个全局卷积神经网络分类器中。与其他基于深度学习的方法不同,它不需要大型标记训练集。

结果

我们在 37 项纵向肝脏 CT 研究中对 246 个肿瘤(其中 97 个是新肿瘤)进行了实验,实验结果显示,与单独检测相比,我们的新方法对新肿瘤的真阳性检测率为 86%,而单独检测的真阳性检测率为 72%,肿瘤负担体积重叠误差为 16%。

结论

新肿瘤检测和肿瘤负担体积测量对于诊断和治疗很重要。我们的新方法通过自动且准确地跟踪已知肿瘤并在随访扫描中检测新肿瘤,为简化放射科医生友好的工作流程提供了一种潜在更准确和可靠的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验