Edwards Parker, Skruber Kristen, Milićević Nikola, Heidings James B, Read Tracy-Ann, Bubenik Peter, Vitriol Eric A
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.
Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
Patterns (N Y). 2021 Oct 12;2(11):100367. doi: 10.1016/j.patter.2021.100367. eCollection 2021 Nov 12.
Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20-30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.
机器学习的最新进展极大地增强了从荧光显微镜数据中提取信息的自动化方法。然而,当前基于机器学习的模型可能需要数百到数千张图像来进行训练,并且最容易获得的模型在对图像进行分类时不会描述图像的哪些部分对分类有贡献。在这里,我们介绍了TDAExplore,一种基于拓扑数据分析的机器学习图像分析管道。它在仅用20 - 30张高分辨率图像训练后就能对不同类型的细胞扰动进行分类,并且在来自多个受试者和显微镜模式的图像上表现稳健。仅使用图像和全图像标签进行训练,TDAExplore就能提供定量的空间信息,表征哪些图像区域对分类有贡献。训练TDAExplore模型的计算要求适中,一台标准的个人电脑在用户输入最少的情况下就能进行训练。因此,在各种各样的应用中,TDAExplore是获取关于成像数据的定量信息的一种易于使用且强大的选择。