Suppr超能文献

人类剪接体识别分支位点的结构基础。

Structural basis of branch site recognition by the human spliceosome.

作者信息

Tholen Jonas, Razew Michal, Weis Felix, Galej Wojciech P

机构信息

European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.

Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.

出版信息

Science. 2022 Jan 7;375(6576):50-57. doi: 10.1126/science.abm4245. Epub 2021 Nov 25.

Abstract

Recognition of the intron branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is a critical event during spliceosome assembly. In mammals, BS sequences are poorly conserved, and unambiguous intron recognition cannot be achieved solely through a base-pairing mechanism. We isolated human 17 U2 snRNP and reconstituted in vitro its adenosine 5´-triphosphate (ATP)–dependent remodeling and binding to the pre–messenger RNA substrate. We determined a series of high-resolution (2.0 to 2.2 angstrom) structures providing snapshots of the BS selection process. The substrate-bound U2 snRNP shows that SF3B6 stabilizes the BS:U2 snRNA duplex, which could aid binding of introns with poor sequence complementarity. ATP-dependent remodeling uncoupled from substrate binding captures U2 snRNA in a conformation that competes with BS recognition, providing a selection mechanism based on branch helix stability.

摘要

U2小核核糖核蛋白(snRNP)对内含子分支位点(BS)的识别是剪接体组装过程中的关键事件。在哺乳动物中,BS序列保守性较差,仅通过碱基配对机制无法实现明确的内含子识别。我们分离出人类17 U2 snRNP,并在体外重建了其依赖腺苷5'-三磷酸(ATP)的重塑过程以及与前体信使RNA底物的结合。我们确定了一系列高分辨率(2.0至2.2埃)结构,提供了BS选择过程的瞬间图像。与底物结合的U2 snRNP表明,SF3B6稳定了BS:U2 snRNA双链体,这可能有助于结合序列互补性较差的内含子。与底物结合解偶联的ATP依赖性重塑以一种与BS识别竞争的构象捕获U2 snRNA,提供了一种基于分支螺旋稳定性的选择机制。

相似文献

1
Structural basis of branch site recognition by the human spliceosome.人类剪接体识别分支位点的结构基础。
Science. 2022 Jan 7;375(6576):50-57. doi: 10.1126/science.abm4245. Epub 2021 Nov 25.
2
Structural insights into branch site proofreading by human spliceosome.人类剪接体的分支位点校对的结构见解
Nat Struct Mol Biol. 2024 May;31(5):835-845. doi: 10.1038/s41594-023-01188-0. Epub 2024 Jan 9.
3
Structural insights into how Prp5 proofreads the pre-mRNA branch site.结构洞察 Prp5 如何校对前 mRNA 分支位点。
Nature. 2021 Aug;596(7871):296-300. doi: 10.1038/s41586-021-03789-5. Epub 2021 Aug 4.
4
Molecular architecture of the human 17S U2 snRNP.人 17S U2 snRNP 的分子结构。
Nature. 2020 Jul;583(7815):310-313. doi: 10.1038/s41586-020-2344-3. Epub 2020 Jun 3.
5
Structure of a pre-catalytic spliceosome.催化前剪接体的结构
Nature. 2017 Jun 29;546(7660):617-621. doi: 10.1038/nature22799. Epub 2017 May 22.
6
Branch site recognition by the spliceosome.剪接体对分支位点的识别。
RNA. 2024 Oct 16;30(11):1397-1407. doi: 10.1261/rna.080198.124.
7
Structure of the activated human minor spliceosome.活化的人类小剪接体的结构。
Science. 2021 Mar 19;371(6535). doi: 10.1126/science.abg0879. Epub 2021 Jan 28.
8
RNA Splicing by the Spliceosome.剪接体的 RNA 剪接。
Annu Rev Biochem. 2020 Jun 20;89:359-388. doi: 10.1146/annurev-biochem-091719-064225. Epub 2019 Dec 3.

引用本文的文献

5
Finding and recycling stalled spliceosomes.寻找并回收停滞的剪接体。
Nat Struct Mol Biol. 2025 May;32(5):775-776. doi: 10.1038/s41594-025-01536-2.
9
Branch site recognition by the spliceosome.剪接体对分支位点的识别。
RNA. 2024 Oct 16;30(11):1397-1407. doi: 10.1261/rna.080198.124.
10
Molecular basis for the activation of human spliceosome.人类剪接体激活的分子基础。
Nat Commun. 2024 Jul 27;15(1):6348. doi: 10.1038/s41467-024-50785-0.

本文引用的文献

1
Coupling of spliceosome complexity to intron diversity.剪接体复杂性与内含子多样性的偶联。
Curr Biol. 2021 Nov 22;31(22):4898-4910.e4. doi: 10.1016/j.cub.2021.09.004. Epub 2021 Sep 22.
3
Structural insights into how Prp5 proofreads the pre-mRNA branch site.结构洞察 Prp5 如何校对前 mRNA 分支位点。
Nature. 2021 Aug;596(7871):296-300. doi: 10.1038/s41586-021-03789-5. Epub 2021 Aug 4.
6
Combining high throughput and high quality for cryo-electron microscopy data collection.高通量与高质量相结合的冷冻电镜数据采集。
Acta Crystallogr D Struct Biol. 2020 Aug 1;76(Pt 8):724-728. doi: 10.1107/S2059798320008347. Epub 2020 Jul 27.
8
Molecular architecture of the human 17S U2 snRNP.人 17S U2 snRNP 的分子结构。
Nature. 2020 Jul;583(7815):310-313. doi: 10.1038/s41586-020-2344-3. Epub 2020 Jun 3.
10
Real-time cryo-electron microscopy data preprocessing with Warp.使用 Warp 进行实时低温电子显微镜数据预处理。
Nat Methods. 2019 Nov;16(11):1146-1152. doi: 10.1038/s41592-019-0580-y. Epub 2019 Oct 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验