Suppr超能文献

通过 CRISPR-Cas 选择性扩增子测序(CCSAS)揭示牡蛎幼体真核微生物组的组成。

Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS).

机构信息

Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.

Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Microbiome. 2021 Nov 26;9(1):230. doi: 10.1186/s40168-021-01180-0.

Abstract

BACKGROUND

The microbiome affects the health of plants and animals, including humans, and has many biological, ecological, and evolutionary consequences. Microbiome studies typically rely on sequencing ribosomal 16S RNA gene fragments, which serve as taxonomic markers for prokaryotic communities; however, for eukaryotic microbes this approach is compromised, because 18S rRNA gene sequences from microbial eukaryotes are swamped by contaminating host rRNA gene sequences.

RESULTS

To overcome this problem, we developed CRISPR-Cas Selective Amplicon Sequencing (CCSAS), a high-resolution and efficient approach for characterizing eukaryotic microbiomes. CCSAS uses taxon-specific single-guide RNA (sgRNA) to direct Cas9 to cut 18S rRNA gene sequences of the host, while leaving protistan and fungal sequences intact. We validated the specificity of the sgRNA on ten model organisms and an artificially constructed (mock) community of nine protistan and fungal pathogens. The results showed that > 96.5% of host rRNA gene amplicons were cleaved, while 18S rRNA gene sequences from protists and fungi were unaffected. When used to assess the eukaryotic microbiome of oyster spat from a hatchery, CCSAS revealed a diverse community of eukaryotic microbes, typically with much less contamination from oyster 18S rRNA gene sequences than other methods using non-metazoan or blocking primers. However, each method revealed taxonomic groups that were not detected using the other methods, showing that a single approach is unlikely to uncover the entire eukaryotic microbiome in complex communities. To facilitate the application of CCSAS, we designed taxon-specific sgRNA for ~16,000 metazoan and plant taxa, making CCSAS widely available for characterizing eukaryotic microbiomes that have largely been neglected.

CONCLUSION

CCSAS provides a high-through-put and cost-effective approach for resolving the eukaryotic microbiome of metazoa and plants with minimal contamination from host 18S rRNA gene sequences. Video Abstract.

摘要

背景

微生物组影响植物和动物(包括人类)的健康,并具有许多生物学、生态学和进化后果。微生物组研究通常依赖于测序核糖体 16S RNA 基因片段,这些片段作为原核生物群落的分类标记;然而,对于真核微生物来说,这种方法是有缺陷的,因为微生物真核生物的 18S rRNA 基因序列被污染的宿主 rRNA 基因序列淹没。

结果

为了解决这个问题,我们开发了 CRISPR-Cas 选择性扩增子测序(CCSAS),这是一种高分辨率和高效的方法,用于描述真核微生物组。CCSAS 使用分类特异性单指导 RNA(sgRNA)引导 Cas9 切割宿主的 18S rRNA 基因序列,而使原生动物和真菌序列保持完整。我们在十个模型生物和一个由九个原生动物和真菌病原体组成的人工构建(模拟)群落上验证了 sgRNA 的特异性。结果表明,>96.5%的宿主 rRNA 基因扩增子被切割,而原生动物和真菌的 18S rRNA 基因序列不受影响。当用于评估来自孵化场的牡蛎幼体的真核微生物组时,CCSAS 揭示了一个多样化的真核微生物群落,通常与其他使用非后生动物或阻断引物的方法相比,来自牡蛎 18S rRNA 基因序列的污染要少得多。然而,每种方法都揭示了其他方法未检测到的分类群,表明单一方法不太可能在复杂群落中发现整个真核微生物组。为了促进 CCSAS 的应用,我们为~16000 个后生动物和植物分类群设计了分类特异性 sgRNA,使 CCSAS 广泛应用于描述真核微生物组,这些微生物组在很大程度上被忽视了。

结论

CCSAS 提供了一种高通量且具有成本效益的方法,用于解决后生动物和植物的真核微生物组问题,同时最大限度地减少宿主 18S rRNA 基因序列的污染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d3/8620255/01280efbffe1/40168_2021_1180_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验