Suppr超能文献

通过使用c-ResUnet深度学习实现荧光显微镜下细胞计数的自动化。

Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet.

作者信息

Morelli Roberto, Clissa Luca, Amici Roberto, Cerri Matteo, Hitrec Timna, Luppi Marco, Rinaldi Lorenzo, Squarcio Fabio, Zoccoli Antonio

机构信息

National Institute for Nuclear Physics, Bologna, Italy.

Department of Physics and Astronomy, University of Bologna, Bologna, Italy.

出版信息

Sci Rep. 2021 Nov 25;11(1):22920. doi: 10.1038/s41598-021-01929-5.

Abstract

Counting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annotating cells is sometimes subject to fatigue errors and suffers from arbitrariness due to the operator's interpretation of the borderline cases. We propose a Deep Learning approach that exploits a fully-convolutional network in a binary segmentation fashion to localize the objects of interest. Counts are then retrieved as the number of detected items. Specifically, we introduce a Unet-like architecture, cell ResUnet (c-ResUnet), and compare its performance against 3 similar architectures. In addition, we evaluate through ablation studies the impact of two design choices, (i) artifacts oversampling and (ii) weight maps that penalize the errors on cells boundaries increasingly with overcrowding. In summary, the c-ResUnet outperforms the competitors with respect to both detection and counting metrics (respectively, [Formula: see text] score = 0.81 and MAE = 3.09). Also, the introduction of weight maps contribute to enhance performances, especially in presence of clumping cells, artifacts and confounding biological structures. Posterior qualitative assessment by domain experts corroborates previous results, suggesting human-level performance inasmuch even erroneous predictions seem to fall within the limits of operator interpretation. Finally, we release the pre-trained model and the annotated dataset to foster research in this and related fields.

摘要

在荧光显微镜下对细胞进行计数是一项繁琐、耗时的任务,研究人员必须完成这项任务,以评估不同实验条件对感兴趣的生物结构的影响。尽管这些物体通常很容易识别,但手动标注细胞的过程有时会出现疲劳误差,并且由于操作人员对边界情况的解释而存在随意性。我们提出了一种深度学习方法,该方法以二进制分割方式利用全卷积网络来定位感兴趣的物体。然后将计数作为检测到的项目数量进行检索。具体来说,我们引入了一种类似于Unet的架构,即细胞ResUnet(c-ResUnet),并将其性能与3种类似架构进行比较。此外,我们通过消融研究评估了两种设计选择的影响,(i)伪像过采样和(ii)权重图,权重图会随着细胞拥挤程度的增加而对细胞边界上的误差进行越来越大的惩罚。总之,c-ResUnet在检测和计数指标方面均优于竞争对手(分别为,[公式:见正文]分数 = 0.81和平均绝对误差 = 3.09)。此外,权重图的引入有助于提高性能,特别是在存在细胞聚集、伪像和混杂生物结构的情况下。领域专家的后续定性评估证实了先前的结果,表明达到了人类水平的性能,因为即使是错误的预测似乎也在操作人员解释的范围内。最后,我们发布了预训练模型和带注释的数据集,以促进该领域及相关领域的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验