U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nat Methods. 2021 Dec;18(12):1499-1505. doi: 10.1038/s41592-021-01312-2. Epub 2021 Nov 25.
Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.
生物体通过转录因子 (TF) 与其靶基因的相互作用来协调细胞功能,尽管在大多数物种中,这些调控关系在很大程度上是未知的。在这里,我们报告了一种高通量的跨物种鉴定 TF-靶基因相互作用的方法,并将其应用于 48 种细菌中的 354 个 TF,生成了 17000 个全基因组结合图谱。该数据集揭示了调控模块的古老保守性和快速进化的主题。我们观察到了重布线,其中 TF 的感应和调控作用得以维持,而靶基因的排列和身份则发生了分歧,在某些情况下编码出全新的功能。我们进一步整合了表型信息来定义新的功能调控模块和途径。最后,我们鉴定了 242 个新的 TF DNA 结合基序,包括已知大肠杆菌基序的 70%增加和假单胞菌 simiae 的第一个注释,揭示了细菌启动子结构的深度保守性。我们的方法为原核生物和真核生物中遗传途径的功能特征提供了一种通用工具。