Suppr超能文献

利用基于3D卷积神经网络训练的人工神经网络的强大功能,在原子模拟中对完美和有缺陷的材料特性进行快速准确的预测。

Rapid and accurate predictions of perfect and defective material properties in atomistic simulation using the power of 3D CNN-based trained artificial neural networks.

作者信息

Peivaste Iman, Ramezani Saba, Alahyarizadeh Ghasem, Ghaderi Reza, Makradi Ahmed, Belouettar Salim

机构信息

Faculty of Engineering, Shahid Beheshti University, Tehran, Iran.

Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg.

出版信息

Sci Rep. 2024 Jan 2;14(1):36. doi: 10.1038/s41598-023-50893-9.

Abstract

This article introduces an innovative approach that utilizes machine learning (ML) to address the computational challenges of accurate atomistic simulations in materials science. Focusing on the field of molecular dynamics (MD), which offers insight into material behavior at the atomic level, the study demonstrates the potential of trained artificial neural networks (tANNs) as surrogate models. These tANNs capture complex patterns from built datasets, enabling fast and accurate predictions of material properties. The article highlights the application of 3D convolutional neural networks (CNNs) to incorporate atomistic details and defects in predictions, a significant advancement compared to current 2D image-based, or descriptor-based methods. Through a dataset of atomistic structures and MD simulations, the trained 3D CNN achieves impressive accuracy, predicting material properties with a root-mean-square error below 0.65 GPa for the prediction of elastic constants and a speed-up of approximately 185 to 2100 times compared to traditional MD simulations. This breakthrough promises to expedite materials design processes and facilitate scale-bridging in materials science, offering a new perspective on addressing computational demands in atomistic simulations.

摘要

本文介绍了一种创新方法,该方法利用机器学习(ML)来应对材料科学中精确原子模拟的计算挑战。聚焦于分子动力学(MD)领域,该领域能在原子层面洞察材料行为,这项研究展示了训练有素的人工神经网络(tANNs)作为替代模型的潜力。这些tANNs从构建的数据集中捕捉复杂模式,从而能够快速且准确地预测材料特性。本文强调了三维卷积神经网络(3D CNNs)在预测中纳入原子细节和缺陷的应用,与当前基于二维图像或描述符的方法相比,这是一项重大进步。通过一个原子结构和MD模拟的数据集,训练后的3D CNN实现了令人印象深刻的准确性,预测弹性常数时的均方根误差低于0.65 GPa,与传统MD模拟相比速度提升了约185至2100倍。这一突破有望加快材料设计过程,并促进材料科学中的尺度衔接,为应对原子模拟中的计算需求提供了新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f255/10762098/752e87974f7d/41598_2023_50893_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验