Suppr超能文献

临床认知衰退不同阶段的加权脑网络分析

Weighted Brain Network Analysis on Different Stages of Clinical Cognitive Decline.

作者信息

Abazid Majd, Houmani Nesma, Dorizzi Bernadette, Boudy Jerome, Mariani Jean, Kinugawa Kiyoka

机构信息

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 9 Rue Charles Fourier, F-91011 Evry, France.

UMR 8256 Biological Adaptation and Aging, CNRS, Faculty of Sciences, Sorbonne University, F-75005 Paris, France.

出版信息

Bioengineering (Basel). 2022 Feb 4;9(2):62. doi: 10.3390/bioengineering9020062.

Abstract

This study addresses brain network analysis over different clinical severity stages of cognitive dysfunction using electroencephalography (EEG). We exploit EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients and Alzheimer's disease (AD) patients. We propose a new framework to study the topological networks with a spatiotemporal entropy measure for estimating the connectivity. Our results show that functional connectivity and graph analysis are frequency-band dependent, and alterations start at the MCI stage. In delta, the SCI group exhibited a decrease of clustering coefficient and an increase of path length compared to MCI and AD. In alpha, the opposite behavior appeared, suggesting a rapid and high efficiency in information transmission across the SCI network. Modularity analysis showed that electrodes of the same brain region were distributed over several modules, and some obtained modules in SCI were extended from anterior to posterior regions. These results demonstrate that the SCI network was more resilient to neuronal damage compared to that of MCI and even more compared to that of AD. Finally, we confirm that MCI is a transitional stage between SCI and AD, with a predominance of high-strength intrinsic connectivity, which may reflect the compensatory response to the neuronal damage occurring early in the disease process.

摘要

本研究使用脑电图(EEG)对认知功能障碍不同临床严重程度阶段的脑网络进行分析。我们利用主观认知障碍(SCI)患者、轻度认知障碍(MCI)患者和阿尔茨海默病(AD)患者的EEG数据。我们提出了一个新框架,用于研究具有时空熵测度的拓扑网络,以估计连通性。我们的结果表明,功能连通性和图分析依赖于频带,并且变化始于MCI阶段。在δ频段,与MCI和AD相比,SCI组的聚类系数降低,路径长度增加。在α频段,出现了相反的情况,表明SCI网络中信息传输迅速且高效。模块性分析表明,同一脑区的电极分布在多个模块中,并且在SCI中获得的一些模块从前部区域延伸到后部区域。这些结果表明,与MCI相比,SCI网络对神经元损伤更具弹性,与AD相比更是如此。最后,我们证实MCI是SCI和AD之间的过渡阶段,具有高强度的内在连通性优势,这可能反映了对疾病过程早期发生的神经元损伤的代偿反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66cb/8869328/be4bd55c989d/bioengineering-09-00062-g001.jpg

相似文献

引用本文的文献

本文引用的文献

8
Network substrates of cognitive impairment in Alzheimer's Disease.阿尔茨海默病认知障碍的网络基础。
Clin Neurophysiol. 2019 Sep;130(9):1581-1595. doi: 10.1016/j.clinph.2019.05.027. Epub 2019 Jun 27.
10
Graph theory methods: applications in brain networks.图论方法:在脑网络中的应用
Dialogues Clin Neurosci. 2018 Jun;20(2):111-121. doi: 10.31887/DCNS.2018.20.2/osporns.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验