Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning 530004, China.
Int J Mol Sci. 2021 Nov 21;22(22):12556. doi: 10.3390/ijms222212556.
Salinity is a serious environmental issue. It has a substantial effect on crop yield, as many crop species are sensitive to salinity due to climate change, and it impact is continuing to increase. Plant microRNAs (miRNAs) contribute to salinity stress response in bread wheat. However, the underlying molecular mechanisms by which miRNAs confer salt tolerance in wheat are unclear. We conducted a genome-wide discovery study using Illumina high throughput sequencing and comprehensive in silico analysis to obtain insight into the underlying mechanisms by which small RNAs confer tolerance to salinity in roots of two contrasting wheat cvv., namely Suntop (salt-tolerant) and Sunmate (salt-sensitive). A total of 191 microRNAs were identified in both cultivars, consisting of 110 known miRNAs and 81 novel miRNAs; 181 miRNAs were shared between the two cultivars. The known miRNAs belonged to 35 families consisted of 23 conserved and 12 unique families. Salinity stress induced 43 and 75 miRNAs in Suntop and Sunmate, respectively. Among them, 14 and 29 known and novel miRNAs were expressed in Suntop and 37 and 38 in Sunmate. In silico analysis revealed 861 putative target mRNAs for the 75 known miRNAs and 52 putative target mRNAs for the 15 candidate novel miRNAs. Furthermore, seven miRNAs including tae-miR156, tae-miR160, tae-miR171a-b, tae-miR319, tae-miR159a-b, tae-miR9657 and novel-mir59 that regulate auxin responsive-factor, SPL, SCL6, PCF5, R2R3 MYB, and CBL-CIPK, respectively, were predicted to contribute to salt tolerance in Suntop. This information helps further our understanding of how the molecular mechanisms of salt tolerance are mediated by miRNAs and may facilitate the genetic improvement of wheat cultivars.
盐度是一个严重的环境问题。由于气候变化,许多作物品种对盐度敏感,因此盐度对作物产量有很大的影响,而且这种影响还在持续增加。植物 microRNAs(miRNAs)有助于面包小麦应对盐胁迫。然而,miRNAs 赋予小麦耐盐性的潜在分子机制尚不清楚。我们使用 Illumina 高通量测序和综合的计算机分析进行了全基因组发现研究,以深入了解小 RNA 赋予两种不同小麦 cvv.(即 Suntop(耐盐)和 Sunmate(盐敏感))根系耐盐性的潜在机制。在这两个品种中总共鉴定出 191 个 microRNAs,包括 110 个已知的 miRNAs 和 81 个新的 miRNAs;这两个品种之间有 181 个 miRNAs 是共享的。已知的 miRNAs 属于 35 个家族,由 23 个保守家族和 12 个独特家族组成。Suntop 和 Sunmate 分别受到盐胁迫诱导 43 和 75 个 miRNAs。其中,Suntop 中有 14 个和 29 个已知和新的 miRNAs 以及 Sunmate 中有 37 个和 38 个已知和新的 miRNAs 表达。计算机分析显示,75 个已知 miRNAs 的 861 个假定靶标 mRNAs 和 15 个候选新 miRNAs 的 52 个假定靶标 mRNAs。此外,预测包括 tae-miR156、tae-miR160、tae-miR171a-b、tae-miR319、tae-miR159a-b、tae-miR9657 和 novel-mir59 在内的 7 个 miRNAs,它们分别调节生长素响应因子、SPL、SCL6、PCF5、R2R3 MYB 和 CBL-CIPK,被预测有助于 Suntop 的耐盐性。这些信息有助于进一步了解 miRNA 介导的耐盐性分子机制,并且可能有助于小麦品种的遗传改良。