Automatic Research Group, Universidad Tecnológica de Pereira, Pereira 660003, Colombia.
Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia.
Sensors (Basel). 2021 Nov 20;21(22):7741. doi: 10.3390/s21227741.
Peripheral nerve blocking (PNB) is a standard procedure to support regional anesthesia. Still, correct localization of the nerve's structure is needed to avoid adverse effects; thereby, ultrasound images are used as an aid approach. In addition, image-based automatic nerve segmentation from deep learning methods has been proposed to mitigate attenuation and speckle noise ultrasonography issues. Notwithstanding, complex architectures highlight the region of interest lacking suitable data interpretability concerning the learned features from raw instances. Here, a kernel-based deep learning enhancement is introduced for nerve structure segmentation. In a nutshell, a random Fourier features-based approach was utilized to complement three well-known semantic segmentation architectures, e.g., fully convolutional network, U-net, and ResUnet. Moreover, two ultrasound image datasets for PNB were tested. Obtained results show that our kernel-based approach provides a better generalization capability from image segmentation-based assessments on different nerve structures. Further, for data interpretability, a semantic segmentation extension of the GradCam++ for class-activation mapping was used to reveal relevant learned features separating between nerve and background. Thus, our proposal favors both straightforward (shallow) and complex architectures (deeper neural networks).
周围神经阻滞 (PNB) 是支持区域麻醉的标准程序。然而,为了避免不良反应,需要正确定位神经结构;因此,超声图像被用作辅助方法。此外,基于深度学习的基于图像的自动神经分割方法已被提出,以减轻超声衰减和斑点噪声问题。尽管如此,复杂的架构突出了感兴趣的区域,缺乏关于从原始实例中学习到的特征的合适数据可解释性。在这里,引入了基于核的深度学习增强来进行神经结构分割。简而言之,利用基于随机傅里叶特征的方法来补充三个著名的语义分割架构,例如全卷积网络、U-net 和 ResUnet。此外,还测试了两个用于 PNB 的超声图像数据集。得到的结果表明,我们的基于核的方法在基于图像分割的不同神经结构评估中提供了更好的泛化能力。此外,为了数据可解释性,使用 GradCam++的语义分割扩展来进行类激活映射,以揭示区分神经和背景的相关学习特征。因此,我们的提案既有利于简单(浅层)的架构,也有利于复杂的架构(更深层的神经网络)。