Suárez Juan Carlos, Urban Milan O, Contreras Amara Tatiana, Grajales Miguel Ángel, Cajiao Cesar, Beebe Stephen E, Rao Idupulapati M
Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia.
Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180002, Colombia.
Plants (Basel). 2021 Nov 9;10(11):2412. doi: 10.3390/plants10112412.
Knowledge of the physiological basis for improved genetic adaptation of common bean ( L.) lines to acid soils and high temperature conditions in the Amazon region of Colombia is limited. In this study, we evaluated the differences among 41 common bean lines in energy use, leaf cooling, photosynthate partitioning to pod formation and grain filling, and grain yield over two seasons under acid soil and high temperature stress in the Amazon region of Colombia. Common bean lines evaluated included medium and large seeded interspecific lines of Mesoamerican and Andean gene pools with different levels of adaptation to abiotic stress conditions and some lines are improved for iron and zinc (biofortified) concentration in seeds. We found three bean lines (GGR 147, SMG 21 and SMG 12) that were superior in their photosynthetic response, leaf cooling, photosynthate partitioning ability to pod formation and grain filling, resulting in grain yields exceeding 1900 kg ha under acid soil and high temperature stress conditions. The superior photosynthetic performance was attributed to the efficient use of absorbed energy on the electron level in thylakoids, which is mainly oriented to a higher quantum yield of PSII (ΦII), lower energy dissipation in the form of heat (ΦNPQ), high linear electron flow (LEF) and high fraction of PSI centers in open state (PSIopen). We speculate that these photosynthetic and photosynthate partitioning responses of superior bean lines are part of the genetic adaptation to acidic soils and high temperature stress conditions. Among the evaluated bean lines, three lines (GGR 147, SMG 21 and SMG 12) combined the desirable attributes for genetic improvement of stress tolerance and biofortification. These lines can serve as parents to further improve traits (energy use efficiency and multiple stress resistance) that are important for bean production in the Amazon region.
关于菜豆(Phaseolus vulgaris L.)品系在哥伦比亚亚马逊地区酸性土壤和高温条件下遗传适应性改善的生理基础的知识有限。在本研究中,我们评估了41个菜豆品系在哥伦比亚亚马逊地区酸性土壤和高温胁迫下两个季节的能量利用、叶片降温、光合产物向荚果形成和籽粒灌浆的分配以及籽粒产量的差异。所评估的菜豆品系包括中美洲和安第斯基因库的中粒和大粒种间品系,它们对非生物胁迫条件的适应水平不同,一些品系的种子中铁和锌(生物强化)浓度有所提高。我们发现三个菜豆品系(GGR 147、SMG 21和SMG 12)在光合响应、叶片降温、光合产物向荚果形成和籽粒灌浆的分配能力方面表现优异,在酸性土壤和高温胁迫条件下籽粒产量超过1900 kg/ha。其优异的光合性能归因于类囊体中电子水平上对吸收能量的有效利用,这主要表现为PSII的量子产率较高(ΦII)、以热形式的能量耗散较低(ΦNPQ)、线性电子流较高(LEF)以及处于开放状态的PSI中心比例较高(PSIopen)。我们推测,这些优异菜豆品系的光合和光合产物分配响应是对酸性土壤和高温胁迫条件遗传适应的一部分。在所评估的菜豆品系中,有三个品系(GGR 147、SMG 21和SMG 12)兼具胁迫耐受性遗传改良和生物强化的理想特性。这些品系可作为亲本,进一步改良对亚马逊地区菜豆生产重要的性状(能量利用效率和多重胁迫抗性)。