Kanazawa Atsuko, Ostendorf Elisabeth, Kohzuma Kaori, Hoh Donghee, Strand Deserah D, Sato-Cruz Mio, Savage Linda, Cruz Jeffrey A, Fisher Nicholas, Froehlich John E, Kramer David M
MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA.
Chemistry, Michigan State University, East LansingMI, USA.
Front Plant Sci. 2017 May 3;8:719. doi: 10.3389/fpls.2017.00719. eCollection 2017.
In wild type plants, decreasing CO lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (). The resulting acidification of the lumen regulates both light harvesting, via the q mechanism, and photosynthetic electron transfer through the cytochrome complex. Here, we show that the mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO. The increased thylakoid proton conductivity (g) in results in decreased and lumen acidification, preventing full activation of q and more rapid electron transfer through the complex, particularly under low CO and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of , rather than inhibition of CEF . Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.
在野生型植物中,降低二氧化碳浓度会降低叶绿体ATP合酶的活性,减缓质子从类囊体腔的外流,导致类囊体质子动力势( )的积累。由此导致的腔酸化通过q机制调节光捕获,并通过细胞色素 复合体调节光合电子传递。在这里,我们表明,拟南芥的 突变体在其叶绿体ATP合酶的γ亚基中存在单点突变,增加了ATP合酶的比活性,并使其在低二氧化碳浓度下无法下调。 中类囊体质子传导率(g)的增加导致 降低和腔酸化,阻止q的完全激活以及通过 复合体的更快电子传递,特别是在低二氧化碳浓度和波动光下。这些条件有利于电子在PSI受体侧的积累,并导致PSI活性严重丧失。将当前结果与之前关于 突变体的研究进行比较,提示了一种普遍机制,即两个突变体中PSI光损伤增加是由 的丧失而非循环电子流(CEF)的抑制引起的。总体而言,我们的结果支持ATP合酶调节在维持光合电子传递控制以防止光损伤方面的关键作用。