Suppr超能文献

质粒在一群致病和固氮细菌中的多样化。

Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria.

机构信息

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.

Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200466. doi: 10.1098/rstb.2020.0466. Epub 2021 Nov 29.

Abstract

Members of the agrobacteria-rhizobia complex (ARC) have multiple and diverse plasmids. The extent to which these plasmids are shared and the consequences of their interactions are not well understood. We extracted over 4000 plasmid sequences from 1251 genome sequences and constructed a network to reveal interactions that have shaped the evolutionary histories of oncogenic virulence plasmids. One newly discovered type of oncogenic plasmid is a mosaic with three incomplete, but complementary and partially redundant virulence loci. Some types of oncogenic plasmids recombined with accessory plasmids or acquired large regions not known to be associated with pathogenicity. We also identified two classes of partial virulence plasmids. One class is potentially capable of transforming plants, but not inciting disease symptoms. Another class is inferred to be incomplete and non-functional but can be found as coresidents of the same strain and together are predicted to confer pathogenicity. The modularity and capacity for some plasmids to be transmitted broadly allow them to diversify, convergently evolve adaptive plasmids and shape the evolution of genomes across much of the ARC. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.

摘要

农杆菌-根瘤菌复合体(ARC)的成员拥有多种多样的质粒。这些质粒的共享程度及其相互作用的后果尚不清楚。我们从 1251 个基因组序列中提取了 4000 多个质粒序列,并构建了一个网络来揭示这些相互作用如何影响致癌毒力质粒的进化历史。一种新发现的致癌质粒是一种具有三个不完整但互补且部分冗余的毒力基因座的嵌合体。一些致癌质粒与附加质粒发生重组或获得了与致病性无关的大片段。我们还鉴定了两类部分毒力质粒。一类具有潜在的转化植物的能力,但不会引发疾病症状。另一类被推断为不完整和非功能性的,但可以作为同一菌株的核心居民存在,并且它们共同被预测可以赋予致病性。一些质粒的模块性和广泛传播的能力允许它们多样化,趋同进化适应性质粒,并塑造 ARC 中大部分基因组的进化。本文是主题为“微生物可移动遗传元件的秘密生活”特刊的一部分。

相似文献

1
Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria.
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200466. doi: 10.1098/rstb.2020.0466. Epub 2021 Nov 29.
3
Plasmid transfer systems in the rhizobia.
Can J Microbiol. 2009 Aug;55(8):917-27. doi: 10.1139/w09-056.
4
Exploring the evolutionary dynamics of Rhizobium plasmids through bipartite network analysis.
Environ Microbiol. 2020 Mar;22(3):934-951. doi: 10.1111/1462-2920.14762. Epub 2019 Aug 16.
5
Pangenome Evolution Reconciles Robustness and Instability of Rhizobial Symbiosis.
mBio. 2022 Jun 28;13(3):e0007422. doi: 10.1128/mbio.00074-22. Epub 2022 Apr 13.
6
Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.
Lett Appl Microbiol. 2018 Jul;67(1):22-31. doi: 10.1111/lam.12998. Epub 2018 May 24.
7
Experimental evolution of a plant pathogen into a legume symbiont.
PLoS Biol. 2010 Jan 12;8(1):e1000280. doi: 10.1371/journal.pbio.1000280.
9
Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris.
Environ Microbiol. 2016 Sep;18(8):2660-76. doi: 10.1111/1462-2920.13415. Epub 2016 Jul 12.
10
Why do plasmids manipulate the expression of bacterial phenotypes?
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200461. doi: 10.1098/rstb.2020.0461. Epub 2021 Nov 29.

引用本文的文献

2
Engineering Agrobacterium for improved plant transformation.
Plant J. 2025 Mar;121(5):e70015. doi: 10.1111/tpj.70015.
3
Beav: a bacterial genome and mobile element annotation pipeline.
mSphere. 2024 Aug 28;9(8):e0020924. doi: 10.1128/msphere.00209-24. Epub 2024 Jul 22.
7
Modular evolution of secretion systems and virulence plasmids in a bacterial species complex.
BMC Biol. 2022 Jan 13;20(1):16. doi: 10.1186/s12915-021-01221-y.
8
Introduction: the secret lives of microbial mobile genetic elements.
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200460. doi: 10.1098/rstb.2020.0460. Epub 2021 Nov 29.
9
Diversification of the Type VI Secretion System in Agrobacteria.
mBio. 2021 Oct 26;12(5):e0192721. doi: 10.1128/mBio.01927-21. Epub 2021 Sep 14.

本文引用的文献

1
T-DNA regions from 350 Agrobacterium genomes: maps and phylogeny.
Plant Mol Biol. 2021 Jun;106(3):239-258. doi: 10.1007/s11103-021-01140-0. Epub 2021 Apr 7.
4
Phytopathogenic Have Diverse Plasmids With Few Conserved Virulence Functions.
Front Microbiol. 2020 May 25;11:1022. doi: 10.3389/fmicb.2020.01022. eCollection 2020.
5
Unexpected conservation and global transmission of agrobacterial virulence plasmids.
Science. 2020 Jun 5;368(6495). doi: 10.1126/science.aba5256.
6
Large-scale network analysis captures biological features of bacterial plasmids.
Nat Commun. 2020 May 15;11(1):2452. doi: 10.1038/s41467-020-16282-w.
7
IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era.
Mol Biol Evol. 2020 May 1;37(5):1530-1534. doi: 10.1093/molbev/msaa015.
9
Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Strains.
Front Microbiol. 2019 Jul 9;10:1554. doi: 10.3389/fmicb.2019.01554. eCollection 2019.
10
A Novel Group of -Like Agrobacteria Associated with Crown Gall Disease of Rhododendron and Blueberry.
Phytopathology. 2019 Nov;109(11):1840-1848. doi: 10.1094/PHYTO-05-19-0167-R. Epub 2019 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验