Xu Yuncheng, Sun Xiaojun, Hu Hua
School of Mathematics and Statistics, Ning Xia University, Ningxia, 750021 China.
School of Mathematics and Information Science, Bao Ji University of Arts and Sciences, Baoji, 721013 China.
J Appl Math Comput. 2022;68(5):3367-3395. doi: 10.1007/s12190-021-01645-3. Epub 2021 Nov 24.
By taking full consideration of contact heterogeneity of individuals, quarantine measures, demographics, information transmission and random environments, we present a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks, which introduces stochastic perturbations to death rate. The formula of the basic reproduction number of the deterministic model is obtained by utilizing the existence of the endemic equilibrium. Next, we define a stopping time, then the existence of a unique global positive solution for the stochastic model is proved by constructing appropriate Lyapunov function to demonstrate the stopping time is infinite. In addition, we also manifest sufficient conditions for diseases extinction and the existence of ergodic stationary distribution by constructing appropriate stochastic Lyapunov functions. At last, numerical simulations illustrate the analytical results.
通过充分考虑个体的接触异质性、隔离措施、人口统计学、信息传播和随机环境,我们提出了一个在无标度网络上具有人口统计学和非单调发病率的随机SIQR流行病模型,该模型对死亡率引入了随机扰动。利用地方病平衡点的存在性得到了确定性模型的基本再生数公式。接下来,我们定义一个停止时间,然后通过构造适当的李雅普诺夫函数来证明停止时间是无穷的,从而证明了随机模型存在唯一的全局正解。此外,我们还通过构造适当的随机李雅普诺夫函数,给出了疾病灭绝和遍历平稳分布存在的充分条件。最后,数值模拟验证了分析结果。