Suppr超能文献

运用计算决策方法预测健身目标不依从性:一项观察性研究方案

Using Methods From Computational Decision-making to Predict Nonadherence to Fitness Goals: Protocol for an Observational Study.

作者信息

McCarthy Marie, Zhang Lili, Monacelli Greta, Ward Tomas

机构信息

Insight Centre For Data Analytics, Dublin City University, Dublin, Ireland.

出版信息

JMIR Res Protoc. 2021 Nov 26;10(11):e29758. doi: 10.2196/29758.

Abstract

BACKGROUND

Can methods from computational models of decision-making be used to build a predictive model to identify individuals most likely to be nonadherent to personal fitness goals? Such a model may have significant value in the global battle against obesity. Despite growing awareness of the impact of physical inactivity on human health, sedentary behavior is increasingly linked to premature death in the developed world. The annual impact of sedentary behavior is significant, causing an estimated 2 million deaths. From a global perspective, sedentary behavior is one of the 10 leading causes of mortality and morbidity. Annually, considerable funding and countless public health initiatives are applied to promote physical fitness, with little impact on sustained behavioral change. Predictive models developed from multimodal methodologies combining data from decision-making tasks with contextual insights and objective physical activity data could be used to identify those most likely to abandon their fitness goals. This has the potential to enable development of more targeted support to ensure that those who embark on fitness programs are successful.

OBJECTIVE

The aim of this study is to determine whether it is possible to use decision-making tasks such as the Iowa Gambling Task to help determine those most likely to abandon their fitness goals. Predictive models built using methods from computational models of decision-making, combining objective data from a fitness tracker with personality traits and modeling from decision-making games delivered via a mobile app, will be used to ascertain whether a predictive algorithm can identify digital personae most likely to be nonadherent to self-determined exercise goals. If it is possible to phenotype these individuals, it may be possible to tailor initiatives to support these individuals to continue exercising.

METHODS

This is a siteless study design based on a bring your own device model. A total of 200 healthy adults who are novice exercisers and own a Fitbit (Fitbit Inc) physical activity tracker will be recruited via social media for this study. Participants will provide consent via the study app, which they will download from the Google Play store (Alphabet Inc) or Apple App Store (Apple Inc). They will also provide consent to share their Fitbit data. Necessary demographic information concerning age and sex will be collected as part of the recruitment process. Over 12 months, the scheduled study assessments will be pushed to the subjects to complete. The Iowa Gambling Task will be administered via a web app shared via a URL.

RESULTS

Ethics approval was received from Dublin City University in December 2020. At manuscript submission, study recruitment was pending. The expected results will be published in 2022.

CONCLUSIONS

It is hoped that the study results will support the development of a predictive model and the study design will inform future research approaches.

TRIAL REGISTRATION

ClinicalTrials.gov NCT04783298; https://clinicaltrials.gov/ct2/show/NCT04783298.

摘要

背景

决策计算模型中的方法能否用于构建一个预测模型,以识别最有可能不坚持个人健身目标的个体?这样的模型在全球对抗肥胖的斗争中可能具有重大价值。尽管人们越来越意识到身体不活动对人类健康的影响,但在发达国家,久坐行为与过早死亡的关联日益增加。久坐行为的年度影响巨大,估计导致200万人死亡。从全球角度来看,久坐行为是导致死亡和发病的十大主要原因之一。每年,大量资金和无数公共卫生举措被用于促进身体健康,但对持续的行为改变影响甚微。从多模态方法开发的预测模型,将决策任务的数据与情境洞察和客观身体活动数据相结合,可用于识别那些最有可能放弃健身目标的人。这有可能促使开发更具针对性的支持措施,以确保那些开始健身计划的人能够成功。

目的

本研究的目的是确定是否可以使用爱荷华赌博任务等决策任务来帮助确定那些最有可能放弃健身目标的人。使用决策计算模型中的方法构建预测模型,将健身追踪器的客观数据与人格特质相结合,并通过移动应用程序进行决策游戏建模,将用于确定预测算法是否能够识别最有可能不坚持自我设定运动目标的数字形象。如果能够对这些个体进行表型分析,那么就有可能量身定制举措来支持这些个体继续锻炼。

方法

这是一项基于自带设备模式的无现场研究设计。本研究将通过社交媒体招募200名健康的成年新手锻炼者,他们拥有Fitbit(Fitbit公司)身体活动追踪器。参与者将通过他们从谷歌Play商店(Alphabet公司)或苹果应用商店(苹果公司)下载的研究应用程序提供同意。他们还将同意分享他们的Fitbit数据。作为招募过程的一部分,将收集有关年龄和性别的必要人口统计信息。在12个月内,预定的研究评估将推送给受试者完成。爱荷华赌博任务将通过通过URL共享的网络应用程序进行管理。

结果

2020年12月获得了都柏林城市大学的伦理批准。在提交手稿时,研究招募工作正在进行中。预期结果将于2022年发表。

结论

希望研究结果将支持预测模型的开发,并且研究设计将为未来的研究方法提供参考。

试验注册

ClinicalTrials.gov NCT04783298;https://clinicaltrials.gov/ct2/show/NCT04783298

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b50c/8665389/44c0c2c5c4e7/resprot_v10i11e29758_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验