Department of Physics, McGill University, 3600 University, Montreal Quebec, Canada H3A2T8.
Department of Physics Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6T 1Z1.
ACS Nano. 2021 Dec 28;15(12):19244-19255. doi: 10.1021/acsnano.1c04862. Epub 2021 Nov 29.
Nanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties. Typically, an average measurement is made across a heterogeneous population, obscuring potentially important information. In this work, we develop and apply a method for characterizing nanoparticles with single-particle resolution. We use convex lens-induced confinement (CLiC) microscopy to isolate and quantify the diffusive trajectories and fluorescent intensities of individual nanoparticles trapped in microwells for long times. First, we benchmark detailed measurements of fluorescent polystyrene nanoparticles against prior data to validate our approach. Second, we apply our method to investigate the size and loading properties of lipid nanoparticle (LNP) vehicles containing silencing RNA (siRNA), as a function of lipid formulation, solution pH, and drug-loading. By taking a comprehensive look at the correlation between the intensity and size measurements, we gain insights into LNP structure and how the siRNA is distributed in the LNP. Beyond introducing an analytic for size and loading, this work allows for future studies of dynamics with single-particle resolution, such as LNP fusion and drug-release kinetics. The prime contribution of this work is to better understand the connections between microscopic and macroscopic properties of drug-delivery vehicles, enabling and accelerating their discovery and development.
纳米颗粒是一种很有前途的解决方案,可以用于输送各种药物和疫苗。优化它们的设计取决于能否解析、理解和预测作为设计参数函数的生物物理和治疗特性。虽然现有的工具已经取得了很大的进展,但由于无法对多个相关特性进行详细测量,理解上仍存在差距。通常,在异构群体中进行平均测量,掩盖了潜在的重要信息。在这项工作中,我们开发并应用了一种用于以单粒子分辨率表征纳米颗粒的方法。我们使用凸面镜诱导限制(CLiC)显微镜来隔离和量化长时间被困在微井中的单个纳米颗粒的扩散轨迹和荧光强度。首先,我们对荧光聚苯乙烯纳米颗粒的详细测量与先前的数据进行基准测试,以验证我们的方法。其次,我们应用我们的方法来研究含有沉默 RNA(siRNA)的脂质纳米颗粒(LNP)载体的大小和载药特性,作为脂质配方、溶液 pH 值和药物加载的函数。通过全面考察强度和大小测量之间的相关性,我们深入了解了 LNP 的结构以及 siRNA 在 LNP 中的分布方式。除了提出大小和载药量的分析方法外,这项工作还允许对具有单粒子分辨率的动力学进行未来研究,例如 LNP 融合和药物释放动力学。这项工作的主要贡献是更好地理解药物输送载体的微观和宏观特性之间的联系,从而能够加速它们的发现和开发。