Mueller Ulrich G, Juenger Thomas E, Kardish Melissa R, Carlson Alexis L, Burns Kathleen M, Edwards Joseph A, Smith Chad C, Fang Chi-Chun, Des Marais David L
Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
Center for Population Biology, University of California, Davisgrid.27860.3b, California, USA.
mSystems. 2021 Dec 21;6(6):e0112521. doi: 10.1128/mSystems.01125-21. Epub 2021 Nov 30.
We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection.
我们开发了一种方法,用于人工选择根际微生物群,使其赋予模式草在钠盐胁迫或铝盐胁迫下生长时的耐盐性。在可控的温室环境中,我们在一个不进化的、高度自交的植物群体的植株之间差异性地繁殖根际微生物群;因此,只有微生物群在我们的实验中进化了,而植株并没有同步进化。为了在植株间移植微生物群时最大限度地使微生物群延续下去,从而最大限度地提高对微生物群选择的反应,我们改进了早期方法,具体如下:(i) 在每个选择周期开始时接种种子时控制微生物群的组装;(ii) 在植株间转移之前对微生物群进行分级,以便只收获、延续和选择细菌和病毒微生物群组分;(iii) 在每个选择周期中,将盐胁迫从轻度逐渐增加到极端盐胁迫,以尽量减少植株过度受胁迫的可能性;(iv) 使用两种非选择对照处理(例如,非选择微生物富集和零接种),以便能够与所选微生物群赋予植株的不断提高的适应性益处进行比较。与以前的方法不同,我们的选择方案在仅进行1至3轮微生物群选择后就产生了能提高植株适应性的微生物群。经过九轮微生物群选择后,被选择赋予铝盐胁迫耐受性的微生物群的效果是非特异性的(这些人工选择的微生物群同样能改善钠盐和铝盐胁迫),但被选择赋予钠盐胁迫耐受性的微生物群的效果是特异性的(这些人工选择的微生物群不能赋予铝盐胁迫耐受性)。具有人工选择的微生物群的植株比具有未选择的对照微生物群的植株种子产量高出55%至205%。我们制定了一个实验方案,改进了早期对微生物群进行人工选择的方法,然后测试了我们方案培育赋予植物耐盐性的根际细菌微生物群的功效。盐胁迫限制了农作物的生长和种子产量,而人工选择的赋予耐盐性的微生物群最终可能有助于提高农业生产力。与以前的微生物群选择实验不同,我们的选择方案在仅对根际微生物群进行1至3轮人工选择后就产生了能提高植物生产力的微生物群,经过九轮微生物群选择后,在极端盐胁迫下种子产量提高了55%至205%。尽管我们是在与室外条件不同的可控温室条件下人工选择微生物群的,但与传统植物育种相比,在极端盐胁迫下将种子产量提高55%至205%是对植物生产力的显著提高。我们描述了一系列额外的实验方案,这将推进对决定微生物群选择功效和反应的关键参数的认识。