Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
G3 (Bethesda). 2021 Oct 19;11(11). doi: 10.1093/g3journal/jkab294.
Metagenomic profiling of the human gut microbiome has discovered DNA from dietary yeasts like Saccharomyces cerevisiae. However, it is unknown if the S. cerevisiae detected by common metagenomic methods are from dead dietary sources, or from live S. cerevisiae colonizing the gut similar to their close relative Candida albicans. While S. cerevisiae can adapt to minimal oxygen and acidic environments, it has not been explored whether this yeast can metabolize mucin, the large, gel-forming, highly glycosylated proteins representing a major source of carbon in the gut mucosa. We reveal that S. cerevisiae can utilize mucin as their main carbon source, as well as perform both a transcriptome analysis and a chemogenomic screen to identify biological pathways required for this yeast to grow optimally in mucin. In total, 739 genes demonstrate significant differential expression in mucin culture, and deletion of 21 genes impact growth in mucin. Both screens suggest that mitochondrial function is required for proper growth in mucin, and through secondary assays we determine that mucin exposure induces mitogenesis and cellular respiration. We further show that deletion of an uncharacterized ORF, YCR095W-A, led to dysfunction in mitochondrial morphology and oxygen consumption in mucin. Finally, we demonstrate that Yps7, an aspartyl protease and homolog to mucin-degrading proteins in C. albicans, is important for growth on mucin. Collectively, our work serves as the initial step toward establishing how this common dietary fungus can survive in the mucus environment of the human gut.
人类肠道微生物组的宏基因组分析发现了来自食用酵母(如酿酒酵母)的 DNA。然而,目前尚不清楚常见的宏基因组方法检测到的酿酒酵母是来自死亡的饮食来源,还是来自定植于肠道的活酿酒酵母,类似于其近亲白色念珠菌。虽然酿酒酵母可以适应低氧和酸性环境,但尚未探索这种酵母是否可以代谢粘蛋白,粘蛋白是一种大型、凝胶形成、高度糖基化的蛋白质,是肠道黏膜中主要的碳源。我们揭示了酿酒酵母可以将粘蛋白作为其主要碳源,同时进行转录组分析和化学生物基因组筛选,以确定这种酵母在粘蛋白中最佳生长所需的生物学途径。共有 739 个基因在粘蛋白培养中表现出显著的差异表达,21 个基因的缺失会影响在粘蛋白中的生长。这两个筛选都表明线粒体功能对于在粘蛋白中正常生长是必需的,通过二次测定我们确定粘蛋白暴露会诱导有丝分裂和细胞呼吸。我们进一步表明,一个未鉴定的 ORF(YCR095W-A)的缺失导致在粘蛋白中线粒体形态和耗氧功能的失调。最后,我们证明了 Yps7,一种天冬氨酸蛋白酶,与白色念珠菌中降解粘蛋白的蛋白质同源,对于在粘蛋白上的生长很重要。总之,我们的工作为建立这种常见的食用真菌如何在人类肠道的粘液环境中生存提供了初步步骤。