Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
Cell Rep. 2021 Nov 30;37(9):110076. doi: 10.1016/j.celrep.2021.110076.
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
谷氨酸能突触后广泛表达的核心蛋白网络介导了整个大脑中依赖于活动的突触可塑性,但不同脑区的突触的特定蛋白质组组成不同。在这里,我们提出了这样一个问题:蛋白质组组成如何影响突触活动下游的依赖于活动的蛋白质-蛋白质相互作用网络(PINs)?我们使用定量多重共免疫沉淀技术,比较了来自不同脑区的体内或体外神经元对不同激动剂或不同形式的眨眼条件反射激活的 PIN 反应。我们报告说,PIN 通过重叠和非重叠 PIN 参数的不同动力学来区分传入的刺激。此外,这些“分子逻辑规则”因脑区而异。我们得出结论,尽管谷氨酸能突触后的 PIN 广泛表达于整个大脑,但它的活动依赖性动力学表现出显著的刺激特异性和脑区特异性多样性。这种多样性可能有助于解释为神经疾病开发特定于分子的药物疗法所面临的挑战。