Suppr超能文献

模型引导的深度高光谱图像超分辨率

Model-Guided Deep Hyperspectral Image Super-Resolution.

作者信息

Dong Weisheng, Zhou Chen, Wu Fangfang, Wu Jinjian, Shi Guangming, Li Xin

出版信息

IEEE Trans Image Process. 2021;30:5754-5768. doi: 10.1109/TIP.2021.3078058. Epub 2021 Jun 23.

Abstract

The trade-off between spatial and spectral resolution is one of the fundamental issues in hyperspectral images (HSI). Given the challenges of directly acquiring high-resolution hyperspectral images (HR-HSI), a compromised solution is to fuse a pair of images: one has high-resolution (HR) in the spatial domain but low-resolution (LR) in spectral-domain and the other vice versa. Model-based image fusion methods including pan-sharpening aim at reconstructing HR-HSI by solving manually designed objective functions. However, such hand-crafted prior often leads to inevitable performance degradation due to a lack of end-to-end optimization. Although several deep learning-based methods have been proposed for hyperspectral pan-sharpening, HR-HSI related domain knowledge has not been fully exploited, leaving room for further improvement. In this paper, we propose an iterative Hyperspectral Image Super-Resolution (HSISR) algorithm based on a deep HSI denoiser to leverage both domain knowledge likelihood and deep image prior. By taking the observation matrix of HSI into account during the end-to-end optimization, we show how to unfold an iterative HSISR algorithm into a novel model-guided deep convolutional network (MoG-DCN). The representation of the observation matrix by subnetworks also allows the unfolded deep HSISR network to work with different HSI situations, which enhances the flexibility of MoG-DCN. Extensive experimental results are reported to demonstrate that the proposed MoG-DCN outperforms several leading HSISR methods in terms of both implementation cost and visual quality. The code is available at https://see.xidian.edu.cn/faculty/wsdong/Projects/MoG-DCN.htm.

摘要

空间分辨率和光谱分辨率之间的权衡是高光谱图像(HSI)中的基本问题之一。鉴于直接获取高分辨率高光谱图像(HR-HSI)面临的挑战,一种折中的解决方案是融合一对图像:一幅在空间域具有高分辨率(HR)但在光谱域具有低分辨率(LR),另一幅则相反。包括全色锐化在内的基于模型的图像融合方法旨在通过求解人工设计的目标函数来重建HR-HSI。然而,由于缺乏端到端优化,这种手工制作的先验知识往往会导致不可避免的性能下降。尽管已经提出了几种基于深度学习的方法用于高光谱全色锐化,但与HR-HSI相关的领域知识尚未得到充分利用,仍有进一步改进的空间。在本文中,我们提出了一种基于深度HSI去噪器的迭代高光谱图像超分辨率(HSISR)算法,以利用领域知识似然性和深度图像先验。通过在端到端优化过程中考虑HSI的观测矩阵,我们展示了如何将迭代HSISR算法展开为一种新颖的模型引导深度卷积网络(MoG-DCN)。子网络对观测矩阵的表示也允许展开后的深度HSISR网络适用于不同的HSI情况,从而增强了MoG-DCN的灵活性。报告了大量实验结果,以证明所提出的MoG-DCN在实现成本和视觉质量方面均优于几种领先的HSISR方法。代码可在https://see.xidian.edu.cn/faculty/wsdong/Projects/MoG-DCN.htm获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验